Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 82, 113701 (2013) [4 Pages]
LETTERS

Structural Analysis and Superconducting Properties of F-Substituted NdOBiS2 Single Crystals

+ Affiliations
1Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan2National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

F-substituted NdOBiS2 superconducting single crystals were grown using CsCl/KCl flux. This is the first example of the single-crystal growth of a BiS2-based superconductor. The obtained single crystals had a plate-like shape with a size of 1–2 mm and a well-developed \(ab\)-plane. The crystal structure of the grown crystals was determined by single-crystal X-ray diffraction analysis to be the tetragonal space group \(P4/nmm\) (#129) with \(a=3.996(3)\) and \(c=13.464(6)\) Å. The chemical formula of the grown crystals was approximately Nd0.98\pm 0.06O0.7\pm 0.1F0.3\pm 0.1Bi0.98\pm 0.04S2, and Cs, K, and Cl were not detected in the grown crystals by electron probe microanalysis. The grown crystals had a critical temperature of approximately 5 K. The superconducting anisotropy of the single crystals was estimated to be about 30 from the effective mass model and the upper critical field.

©2013 The Physical Society of Japan

References

  • 1 Y.Mizuguchi, H.Fujihisa, Y.Gotoh, K.Suzuki, H.Usui, K.Kuroki, S.Demura, Y.Takano, H.Izawa, and O.Miura: Phys. Rev. B 86 (2012) 220510(R). CrossrefGoogle Scholar
  • 2 Y.Mizuguchi, S.Demura, K.Deguchi, Y.Takano, H.Fujihisa, Y.Gotoh, H.Izawa, and O.Miura: J. Phys. Soc. Jpn. 81 (2012) 114725. LinkGoogle Scholar
  • 3 J.Xing, S.Li, X.Ding, H.Yang, and H.-H.Wen: Phys. Rev. B 86 (2012) 214518. CrossrefGoogle Scholar
  • 4 R.Jha, A.Kumar, S.Kumar Singh, and V. P. S.Awana: J. Supercond. Novel Magn. 26 (2013) 499. CrossrefGoogle Scholar
  • 5 S.Demura, Y.Mizuguchi, K.Deguchi, H.Okazaki, H.Hara, T.Watanabe, S. J.Denholme, M.Fujioka, T.Ozaki, H.Fujihisa, Y.Gotoh, O.Miura, T.Yamaguchi, H.Takeya, and Y.Takano: J. Phys. Soc. Jpn. 82 (2013) 033708. LinkGoogle Scholar
  • 6 D.Yazici, K.Huang, B. D.White, A. H.Chang, A. J.Friedman, and M. B.Maple: Philos. Mag. 93 (2013) 673. CrossrefGoogle Scholar
  • 7 X.Lin, X.Ni, B.Chen, X.Xu, X.Yang, J.Dai, Y.Li, X.Yang, Y.Luo, Q.Tao, G.Cao, and Z.Xu: Phys. Rev. B 87 (2013) 020504. CrossrefGoogle Scholar
  • 8 A.Katsui: Jpn. J. Appl. Phys. 27 (1988) L844. CrossrefGoogle Scholar
  • 9 X. L.Wang, J.Horvat, H. K.Liu, and S. X.Dou: J. Cryst. Growth 173 (1997) 380. CrossrefGoogle Scholar
  • 10 S.Lee, A.Yamamoto, and S.Tajima: J. Mater. Res. 17 (2002) 2286. CrossrefGoogle Scholar
  • 11 M.Masaoka and A.Kyono: Mater. Lett. 60 (2006) 3922. CrossrefGoogle Scholar
  • 12 R.Hu, H.Lei, M.Abeykoon, E. S.Bozin, S. J. L.Billinge, J. B.Warren, T.Siegrist, and C.Petrovic: Phys. Rev. B 83 (2011) 224502. CrossrefGoogle Scholar
  • 13 G. N.Oh and J. A.Ibers: Acta Crystallogr., Sect. E 67 (2011) i75. CrossrefGoogle Scholar
  • 14 CrystalStructure 3.7.0: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2007). Google Scholar
  • 15 K.Momma and F.Izumi: J. Appl. Crystallogr. 41 (2008) 653. CrossrefGoogle Scholar
  • 16 Y.Iye, I.Oguro, T.Tamegai, W. R.Datars, N.Motohira, and K.Kitazawa: Physica C 199 (1992) 154. CrossrefGoogle Scholar
  • 17 H.Iwasaki, O.Taniguchi, S.Kenmochi, and N.Kobayashi: Physica C 244 (1995) 71. CrossrefGoogle Scholar
  • 18 G.Blatter, V. B.Geshkenbein, and A. I.Larkin: Phys. Rev. Lett. 68 (1992) 875. CrossrefGoogle Scholar
  • 19 R.Jha, A.Kumar, S.Kumar Singh, and V. P. S.Awana: J. Appl. Phys. 113 (2013) 056102. CrossrefGoogle Scholar