J. Phys. Soc. Jpn. 83, 054713 (2014) [8 Pages]
FULL PAPERS

Magnetism in GdCo2B2 Studied on a Single Crystal

+ Affiliations
1Faculty of Mathematics and Physics, Charles University, DCMP, Ke Karlovu 5, CZ-12116 Praha 2, Czech Republic2National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan3Tokyo Denki University, Adachi, Tokyo 120-8551, Japan

We have prepared a high quality single crystal of GdCo2B2 and studied complicated magnetism by measuring the magnetization, AC susceptibility and heat capacity. The results can be conceived in terms of low-temperature antiferromagnetism (below TN = 22 K) undergoing three order to order magnetic phase transitions at T1 = 18.5, T2 = 13, and T3 = 7 K, respectively. Measurements on the single crystal allowed us determining the weak magnetocrystalline anisotropy when the a-axis appears to be direction of the easy magnetization. In addition spin-flop transitions have been detected on magnetization loops. We have constructed complex HT magnetic phase diagrams and calculated magnetocaloric effect (MCE). The large magnetic entropy change of \(\Delta S_{\text{mag}}^{(9\text{T})} = 24\) J kg−1 K−1 is attributed to the instability of antiferromagnetic ordering which can be easily changed to field-induced ferromagnetic state. The interpretation of experimental results is corroborated by ab initio electronic structure calculations.

©2014 The Physical Society of Japan

References

  • 1 I. Felner, Solid State Commun. 52, 191 (1984). 10.1016/0038-1098(84)90625-2 CrossrefGoogle Scholar
  • 2 L. W. Li, D. X. Huo, Z. H. Qian, and K. Nishimura, 1st Int. Symp. Spintronic Devices and Commercialization, (ISSDC 2010), 2010, p. 263. Google Scholar
  • 3 L. Li, K. Nishimura, and H. Yamane, Appl. Phys. Lett. 94, 102509 (2009). 10.1063/1.3095660 CrossrefGoogle Scholar
  • 4 H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). 10.1107/S0021889869006558 CrossrefGoogle Scholar
  • 5 T. Roisnel and J. Rodriguez-Carvajal, in EPDIC 7 — 7th European Powder Diffraction Conf., ed. R. Delhez and E. J. Mittemeijer (Trans Tech, Barcelona, 2000). Google Scholar
  • 6 J. Rodríguez-Carvajal, Physica B 192, 55 (1993). 10.1016/0921-4526(93)90108-I CrossrefGoogle Scholar
  • 7 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244 CrossrefGoogle Scholar
  • 8 K. Schwarz, P. Blaha, and G. K. H. Madsen, Comput. Phys. Commun. 147, 71 (2002). 10.1016/S0010-4655(02)00206-0 CrossrefGoogle Scholar
  • 9 J. Kuneš and R. Laskowski, Phys. Rev. B 70, 174415 (2004). 10.1103/PhysRevB.70.174415 CrossrefGoogle Scholar
  • 10 H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). 10.1107/S0021889869006558 CrossrefGoogle Scholar
  • 11 M. Vališka, J. Pospišil, J. Prokleška, M. Diviš, A. Rudajevová, and V. Sechovský, J. Phys. Soc. Jpn. 81, 104715 (2012). 10.1143/JPSJ.81.104715 LinkGoogle Scholar
  • 12 M. Vališka, J. Pospišil, J. Prokleška, M. Diviš, A. Rudajevová, I. Turek, and V. Sechovský, J. Alloys Compd. 574, 459 (2013). 10.1016/j.jallcom.2013.05.047 CrossrefGoogle Scholar
  • 13 M. Bouvier, P. Lethuillier, and D. Schmitt, Phys. Rev. B 43, 13137 (1991). 10.1103/PhysRevB.43.13137 CrossrefGoogle Scholar
  • 14 V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997). 10.1103/PhysRevLett.78.4494 CrossrefGoogle Scholar
  • 15 M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Cryogenics 32, 867 (1992). 10.1016/0011-2275(92)90352-B CrossrefGoogle Scholar
  • 16 M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, J. Appl. Phys. 79, 1689 (1996). 10.1063/1.360955 CrossrefGoogle Scholar
  • 17 H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001). 10.1063/1.1419048 CrossrefGoogle Scholar
  • 18 E. Brück, J. Phys. D 38, R381 (2005). 10.1088/0022-3727/38/23/R01 CrossrefGoogle Scholar