J. Phys. Soc. Jpn. 84, 014701 (2015) [7 Pages]
FULL PAPERS

Electron Reconfiguration and Enhanced Phonon Activation in the Superconducting State of a FeSe0.3Te0.7 Single Crystal, as Evidenced by Mössbauer Spectroscopy

+ Affiliations
1National Institute of Materials Physics, Magurele 077125, Romania2Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of China

The Mössbauer spectra of a FeSe0.3Te0.7 single crystal grown by the Bridgman method were analysed across the superconducting transition by considering the interplay between the structure and electron configuration of the transition metal. The magnetically determined superconducting critical temperature is TC ∼ 14 K. The 57Fe Mössbauer spectra collected in the temperature range from 5 to 200 K mainly have an asymmetric doublet pattern, which was conveniently fitted by the full Hamiltonian method. No effective magnetic moment ascribed to the superconducting phase was observed down to 5 K. The unusual behaviour observed below ∼17 K for the chemical isomer shift and quadrupole splitting may be associated with an electron reconfiguration process intimately related to an unusual lattice distortion accompanying the superconducting transition. The decreasing trend of the total absorption spectral area and second-order Doppler shift during cooling the sample below the critical temperature, point to enhanced phonon activation in the superconducting state.

©2015 The Physical Society of Japan

References

  • 1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008). 10.1021/ja800073m18293989 CrossrefGoogle Scholar
  • 2 E. Park, N. H. Lee, W. N. Kang, and T. Park, Appl. Phys. Lett. 101, 042601 (2012). 10.1063/1.4738783 CrossrefGoogle Scholar
  • 3 R. Prozorov and V. G. Kogan, Rep. Prog. Phys. 74, 124505 (2011). 10.1088/0034-4885/74/12/124505 CrossrefGoogle Scholar
  • 4 C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature 453, 899 (2008). 10.1038/nature0705718509333 CrossrefGoogle Scholar
  • 5 G. Hagg and A. L. Kindström, Phys. Chem. B 22, 453 (1933). CrossrefGoogle Scholar
  • 6 S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009). 10.1038/nmat249119525948 CrossrefGoogle Scholar
  • 7 F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008). 10.1073/pnas.080732510518776050 CrossrefGoogle Scholar
  • 8 S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009). 10.1103/PhysRevB.80.064506 CrossrefGoogle Scholar
  • 9 K.-W. Yeh, T.-W. Huang, Y.-L. Huang, T.-K. Chen, F.-C. Hsu, P. M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, Europhys. Lett. 84, 37002 (2008). 10.1209/0295-5075/84/37002 CrossrefGoogle Scholar
  • 10 A. Ciechan, M. J. Winiarski, and M. Samsel-Czeka, Intermetallics 41, 44 (2013). 10.1016/j.intermet.2013.04.015 CrossrefGoogle Scholar
  • 11 B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, and D. Mandrus, Phys. Rev. B 79, 094521 (2009). 10.1103/PhysRevB.79.094521 CrossrefGoogle Scholar
  • 12 S. Li, C. Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y.-L. Huang, F.-C. Hsu, K.-W. Yeh, M.-K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009). 10.1103/PhysRevB.79.054503 CrossrefGoogle Scholar
  • 13 H. Okada, H. Takahashi, Y. Mizuguchi, Y. Takano, and H. Takahashi, J. Phys. Soc. Jpn. 78, 083709 (2009). 10.1143/JPSJ.78.083709 LinkGoogle Scholar
  • 14 Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo, and J. L. Yang, Phys. Rev. Lett. 104, 017003 (2010). 10.1103/PhysRevLett.104.01700320366386 CrossrefGoogle Scholar
  • 15 M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008). 10.1103/PhysRevB.78.224503 CrossrefGoogle Scholar
  • 16 H. Kotegawa and M. Fujita, Sci. Technol. Adv. Mater. 13, 054302 (2012). 10.1088/1468-6996/13/5/054302 CrossrefGoogle Scholar
  • 17 C. W. Luo, I. H. Wu, P. C. Cheng, J.-Y. Lin, K. H. Wu, T. M. Uen, J. Y. Juang, T. Kobayashi, Y. C. Wen, T. W. Huang, K. W. Yeh, M. K. Wu, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, New J. Phys. 14, 103053 (2012). 10.1088/1367-2630/14/10/103053 CrossrefGoogle Scholar
  • 18 A. Sklyarova, J. Lindén, E.-L. Rautama, and M. Karppinen, J. Magn. Magn. Mater. 329, 129 (2013). 10.1016/j.jmmm.2012.10.013 CrossrefGoogle Scholar
  • 19 J. Wen, G. Xu, Z. Xu, Z. W. Lin, Q. Li, W. Ratcliff, G. Gu, and J. M. Tranquada, Phys. Rev. B 80, 104506 (2009). 10.1103/PhysRevB.80.104506 CrossrefGoogle Scholar
  • 20 C. Dong, H. Wang, Z. Li, J. Chen, H. Q. Yuan, and M. Fang, Phys. Rev. B 84, 224506 (2011). 10.1103/PhysRevB.84.224506 CrossrefGoogle Scholar
  • 21 W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009). 10.1103/PhysRevLett.102.24700119659037 CrossrefGoogle Scholar
  • 22 M. C. Lehman, A. Llobet, K. Horigane, and D. Louca, J. Phys.: Conf. Ser. 251, 012009 (2010). 10.1088/1742-6596/251/1/012009 CrossrefGoogle Scholar
  • 23 V. A. Sidorov, A. V. Tsvyaschchenko, and R. A. Sadykov, arXiv:0903.2873. Google Scholar
  • 24 T. Noji, T. Suzuki, H. Abe, T. Adachi, M. Kato, and Y. Koike, J. Phys. Soc. Jpn. 79, 084711 (2010). 10.1143/JPSJ.79.084711 LinkGoogle Scholar
  • 25 R. A. Brand, Nucl. Instrum. Methods Phys. Res., Sect. B 28, 398 (1987). 10.1016/0168-583X(87)90182-0 CrossrefGoogle Scholar
  • 26 E. J. W. Verwey and P. W. Haayman, Physica 8, 979 (1941). 10.1016/S0031-8914(41)80005-6 CrossrefGoogle Scholar
  • 27 B. A. Calhoun, Phys. Rev. 94, 1577 (1954). 10.1103/PhysRev.94.1577 CrossrefGoogle Scholar
  • 28 J. B. Yang, X. D. Zhou, W. B. Yelon, W. J. James, Q. Cai, K. V. Gopalakrishnan, S. K. Malik, X. C. Sun, and D. E. Nikles, J. Appl. Phys. 95, 7540 (2004). 10.1063/1.1669344 CrossrefGoogle Scholar
  • 29 J. K. M. Lindén, E.-L. Rautama, M. Karppinen, and H. Yamauchi, Hyperfine Interactions 208, 133 (2012). 10.1007/s10751-011-0482-6 CrossrefGoogle Scholar
  • 30 A. Błachowski, K. Ruebenbauer, J. Żukrowski, J. Przewoźnik, K. Wojciechowski, and Z. M. Stadnik, in Problems of Modern Techniques in Engineering and Education, ed. P. Kurtyka, P. Malczewski, and K. Ziewiec (Institute of Technology, Pedagogical University, Cracow, 2009) p. 15. Google Scholar
  • 31 R. W. Gómez, V. Marquina, J. L. Pérez-Mazariego, R. Escamilla, R. Escudero, M. Quintana, J. J. Hernández-Gómez, R. Ridaura, and M. L. Marquina, J. Supercond. Novel Magn. 23, 551 (2010). 10.1007/s10948-010-0764-2 CrossrefGoogle Scholar
  • 32 J. Lindén, J.-P. Libäck, M. Karppinen, E.-L. Rautama, and H. Yamauchi, Solid State Commun. 151, 130 (2011). 10.1016/j.ssc.2010.11.006 CrossrefGoogle Scholar
  • 33 V. I. Goldanskii, G. M. Gorodinskii, S. V. Karyagin, L. A. Korytko, L. M. Krizhanskii, E. F. Makarov, I. P. Suzdalev, and V. V. Khrapov, Dokl. Akad. Nauk SSSR 147, 127 (1962). Google Scholar
  • 34 S. V. Karyagin, Dokl. Akad. Nauk SSSR 148, 1102 (1963). Google Scholar
  • 35 U. Gonser, Mössbauer Spectroscopy (Springer, Berlin, 1975) p. 28. CrossrefGoogle Scholar
  • 36 N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971) p. 66. CrossrefGoogle Scholar
  • 37 D. Louca, K. Horigane, A. Llobet, R. Arita, S. Ji, N. Katayama, S. Konbu, K. Nakamura, T.-Y. Koo, P. Tong, and K. Yamada, Phys. Rev. B 81, 134524 (2010). 10.1103/PhysRevB.81.134524 CrossrefGoogle Scholar
  • 38 V. Kuncser, U. Russo, R. Graziani, A. Della Giusta, and G. Filoti, J. Phys.: Condens. Matter 12, 1451 (2000). 10.1088/0953-8984/12/7/326 CrossrefGoogle Scholar
  • 39 V. Kuncser, U. Russo, R. Graziani, A. Della Giusta, P. Palade, M. Bulinski, and G. Filoti, Phys. Chem. Miner. 27, 95 (1999). 10.1007/s002690050245 CrossrefGoogle Scholar
  • 40 J. Cieslak, B. F. O. Costa, S. M. Dubiel, M. Reissner, and W. Steiner, J. Phys.: Condens. Matter 16, L343 (2004). 10.1088/0953-8984/16/29/L01 CrossrefGoogle Scholar
  • 41 P. Gütlich, E. Bill, and A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, Berlin, 2011) p. 81. CrossrefGoogle Scholar
  • 42 U. Gonser, Mössbauer Spectroscopy (Springer, Berlin, 1975) Chap. 1.3. CrossrefGoogle Scholar
  • 43 L. R. Testardi, T. B. Bateman, W. A. Reed, and V. G. Chirba, Phys. Rev. Lett. 15, 250 (1965). 10.1103/PhysRevLett.15.250 CrossrefGoogle Scholar
  • 44 L. R. Testardi and T. B. Bateman, Phys. Rev. 154, 402 (1967). 10.1103/PhysRev.154.402 CrossrefGoogle Scholar
  • 45 R. N. Bhatt and W. L. McMillan, Phys. Rev. B 14, 1007 (1976). 10.1103/PhysRevB.14.1007 CrossrefGoogle Scholar