J. Phys. Soc. Jpn. 84, 023704 (2015) [4 Pages]
LETTERS

Uniaxial-Stress-Induced Ferromagnetism in the Itinerant Metamagnetic Compound UCoAl Probed by Magnetostriction Measurements

+ Affiliations
1Univ. Grenoble Alpes, INAC-SPSMS, CEA-Grenoble, F-38000 Grenoble, France2Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan

Magnetostriction measurements for the Ising-type itinerant metamagnetic compound UCoAl were performed under uniaxial stress for σ || c-axis using an in situ pressure-tuning device. A ferromagnetic transition was clearly observed at zero magnetic field at least above ∼0.05 GPa. For a stress of 0.1 GPa, the FM transition is of 2nd order, since the anomaly of the thermal expansion coefficient does not show any hysteresis at the transition. No step like behavior was observed for the FM transition under uniaxial stress in the present study. From the precise stress dependence of TC, a change of the power (n) law from 3/4 to 1/2 was also found at around 0.1 GPa for the expression of TC(σ) ∝ (σ − σc)n, where the critical value is σc ∼ 0.026 GPa.

©2015 The Physical Society of Japan

References

  • 1 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Heidelberg, 1985). CrossrefGoogle Scholar
  • 2 C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005 (2002). 10.1103/PhysRevLett.89.14700512366070 CrossrefGoogle Scholar
  • 3 V. Taufour, D. Aoki, G. Knebel, and J. Flouquet, Phys. Rev. Lett. 105, 217201 (2010). 10.1103/PhysRevLett.105.21720121231345 CrossrefGoogle Scholar
  • 4 M. Uhlarz, C. Pfleiderer, and S. M. Hayden, Phys. Rev. Lett. 93, 256404 (2004). 10.1103/PhysRevLett.93.25640415697921 CrossrefGoogle Scholar
  • 5 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett. 82, 4707 (1999). 10.1103/PhysRevLett.82.4707 CrossrefGoogle Scholar
  • 6 D. Belitz, T. R. Kirkpatrick, and J. Rollbühler, Phys. Rev. Lett. 94, 247205 (2005). 10.1103/PhysRevLett.94.247205 CrossrefGoogle Scholar
  • 7 H. Kotegawa, V. Taufour, D. Aoki, G. Knebel, and J. Flouquet, J. Phys. Soc. Jpn. 80, 083703 (2011). 10.1143/JPSJ.80.083703 LinkGoogle Scholar
  • 8 N. Kabeya, H. Maekawa, K. Deguchi, N. Kimura, H. Aoki, and N. K. Sato, J. Phys. Soc. Jpn. 81, 073706 (2012). 10.1143/JPSJ.81.073706 LinkGoogle Scholar
  • 9 M. T. Béal-Monod, S.-K. Ma, and D. R. Fredkin, Phys. Rev. Lett. 20, 929 (1968). 10.1103/PhysRevLett.20.929 CrossrefGoogle Scholar
  • 10 N. V. Mushnikov, T. Goto, K. Kamishima, H. Yamada, A. V. Andreev, Y. Shiokawa, A. Iwao, and V. Sechovsky, Phys. Rev. B 59, 6877 (1999). 10.1103/PhysRevB.59.6877 CrossrefGoogle Scholar
  • 11 D. Aoki, T. Combier, V. Taufour, T. D. Matsuda, G. Knebel, H. Kotegawa, and J. Flouquet, J. Phys. Soc. Jpn. 80, 094711 (2011). 10.1143/JPSJ.80.094711 LinkGoogle Scholar
  • 12 V. Sechovsky, L. Havela, F. R. de Boer, J. J. M. Franse, P. A. Veenhuizen, J. Sebek, J. Stehno, and A. V. Andreev, Physica B+C 142, 283 (1986). 10.1016/0378-4363(86)90023-9 CrossrefGoogle Scholar
  • 13 Y. Ishii, M. Kosaka, Y. Uwatoko, A. V. Andreev, and V. Sechovsky, Physica B 334, 160 (2003). 10.1016/S0921-4526(03)00041-3 CrossrefGoogle Scholar
  • 14 K. Karube, S. Kitagawa, T. Hattori, K. Ishida, N. Kimura, and T. Komatsubara, J. Phys. Soc. Jpn. 83, 084706 (2014). 10.7566/JPSJ.83.084706 LinkGoogle Scholar
  • 15 B. Salce, J. Thomasson, A. Demuer, J. J. Blanchard, J. M. Martinod, L. Devoille, and A. Guillaume, Rev. Sci. Instrum. 71, 2461 (2000). 10.1063/1.1150664 CrossrefGoogle Scholar
  • 16 F. Honda, T. Kagayama, G. Oomi, L. Havela, V. Sechovský, and A. V. Andreev, Physica B 284–288, 1299 (2000). 10.1016/S0921-4526(99)02577-6 CrossrefGoogle Scholar
  • 17 P. A. Veenhuizen, F. R. de Boer, A. A. Menovsky, V. Sechovsky, and L. Havela, J. Phys. Colloq. 49, C8-485 (1988). 10.1051/jphyscol:19888220 CrossrefGoogle Scholar
  • 18 P. Javorský, L. Havela, F. Wastin, P. Boulet, and J. Rebizant, Phys. Rev. B 69, 054412 (2004). 10.1103/PhysRevB.69.054412 CrossrefGoogle Scholar
  • 19 T. Combier, Doctral Thesis, CEA-Grenoble (2014). Google ScholarT. Combier, Doctral Thesis, CEA-Grenoble (2014). Google Scholar
  • 20 J. A. Hertz, Phys. Rev. B 14, 1165 (1976). 10.1103/PhysRevB.14.1165 CrossrefGoogle Scholar
  • 21 A. J. Millis, Phys. Rev. B 48, 7183 (1993). 10.1103/PhysRevB.48.7183 CrossrefGoogle Scholar
  • 22 See for example, H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, U.K., 2011). Google Scholar
  • 23 K. Karube, T. Hattori, S. Kitagawa, K. Ishida, N. Kimura, and T. Komatsubara, Phys. Rev. B 86, 024428 (2012). 10.1103/PhysRevB.86.024428 CrossrefGoogle Scholar
  • 24 M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl, Phys. Rev. Lett. 82, 4268 (1999). 10.1103/PhysRevLett.82.4268 CrossrefGoogle Scholar
  • 25 C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Phys. Rev. B 55, 8330 (1997). 10.1103/PhysRevB.55.8330 CrossrefGoogle Scholar
  • 26 Y. Shimizu, D. Braithwaite, B. Salce, T. Combier, D. Aoki, E. N. Hering, S. M. Ramos, and J. Flouquet, to be submitted. Google Scholar
  • 27 See for example, H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985). Google Scholar