- Full text:
- PDF (eReader) / PDF (Download) (928 kB)
Magnetostriction measurements for the Ising-type itinerant metamagnetic compound UCoAl were performed under uniaxial stress for σ || c-axis using an in situ pressure-tuning device. A ferromagnetic transition was clearly observed at zero magnetic field at least above ∼0.05 GPa. For a stress of 0.1 GPa, the FM transition is of 2nd order, since the anomaly of the thermal expansion coefficient does not show any hysteresis at the transition. No step like behavior was observed for the FM transition under uniaxial stress in the present study. From the precise stress dependence of TC, a change of the power (n) law from 3/4 to 1/2 was also found at around 0.1 GPa for the expression of TC(σ) ∝ (σ − σc)n, where the critical value is σc ∼ 0.026 GPa.
References
- 1 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Heidelberg, 1985). Crossref, Google Scholar
- 2 C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005 (2002). 10.1103/PhysRevLett.89.14700512366070 Crossref, Google Scholar
- 3 V. Taufour, D. Aoki, G. Knebel, and J. Flouquet, Phys. Rev. Lett. 105, 217201 (2010). 10.1103/PhysRevLett.105.21720121231345 Crossref, Google Scholar
- 4 M. Uhlarz, C. Pfleiderer, and S. M. Hayden, Phys. Rev. Lett. 93, 256404 (2004). 10.1103/PhysRevLett.93.25640415697921 Crossref, Google Scholar
- 5 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett. 82, 4707 (1999). 10.1103/PhysRevLett.82.4707 Crossref, Google Scholar
- 6 D. Belitz, T. R. Kirkpatrick, and J. Rollbühler, Phys. Rev. Lett. 94, 247205 (2005). 10.1103/PhysRevLett.94.247205 Crossref, Google Scholar
- 7 H. Kotegawa, V. Taufour, D. Aoki, G. Knebel, and J. Flouquet, J. Phys. Soc. Jpn. 80, 083703 (2011). 10.1143/JPSJ.80.083703 Link, Google Scholar
- 8 N. Kabeya, H. Maekawa, K. Deguchi, N. Kimura, H. Aoki, and N. K. Sato, J. Phys. Soc. Jpn. 81, 073706 (2012). 10.1143/JPSJ.81.073706 Link, Google Scholar
- 9 M. T. Béal-Monod, S.-K. Ma, and D. R. Fredkin, Phys. Rev. Lett. 20, 929 (1968). 10.1103/PhysRevLett.20.929 Crossref, Google Scholar
- 10 N. V. Mushnikov, T. Goto, K. Kamishima, H. Yamada, A. V. Andreev, Y. Shiokawa, A. Iwao, and V. Sechovsky, Phys. Rev. B 59, 6877 (1999). 10.1103/PhysRevB.59.6877 Crossref, Google Scholar
- 11 D. Aoki, T. Combier, V. Taufour, T. D. Matsuda, G. Knebel, H. Kotegawa, and J. Flouquet, J. Phys. Soc. Jpn. 80, 094711 (2011). 10.1143/JPSJ.80.094711 Link, Google Scholar
- 12 V. Sechovsky, L. Havela, F. R. de Boer, J. J. M. Franse, P. A. Veenhuizen, J. Sebek, J. Stehno, and A. V. Andreev, Physica B+C 142, 283 (1986). 10.1016/0378-4363(86)90023-9 Crossref, Google Scholar
- 13 Y. Ishii, M. Kosaka, Y. Uwatoko, A. V. Andreev, and V. Sechovsky, Physica B 334, 160 (2003). 10.1016/S0921-4526(03)00041-3 Crossref, Google Scholar
- 14 K. Karube, S. Kitagawa, T. Hattori, K. Ishida, N. Kimura, and T. Komatsubara, J. Phys. Soc. Jpn. 83, 084706 (2014). 10.7566/JPSJ.83.084706 Link, Google Scholar
- 15 B. Salce, J. Thomasson, A. Demuer, J. J. Blanchard, J. M. Martinod, L. Devoille, and A. Guillaume, Rev. Sci. Instrum. 71, 2461 (2000). 10.1063/1.1150664 Crossref, Google Scholar
- 16 F. Honda, T. Kagayama, G. Oomi, L. Havela, V. Sechovský, and A. V. Andreev, Physica B 284–288, 1299 (2000). 10.1016/S0921-4526(99)02577-6 Crossref, Google Scholar
- 17 P. A. Veenhuizen, F. R. de Boer, A. A. Menovsky, V. Sechovsky, and L. Havela, J. Phys. Colloq. 49, C8-485 (1988). 10.1051/jphyscol:19888220 Crossref, Google Scholar
- 18 P. Javorský, L. Havela, F. Wastin, P. Boulet, and J. Rebizant, Phys. Rev. B 69, 054412 (2004). 10.1103/PhysRevB.69.054412 Crossref, Google Scholar
- 19 T. Combier, Doctral Thesis, CEA-Grenoble (2014). Google ScholarT. Combier, Doctral Thesis, CEA-Grenoble (2014). Google Scholar
- 20 J. A. Hertz, Phys. Rev. B 14, 1165 (1976). 10.1103/PhysRevB.14.1165 Crossref, Google Scholar
- 21 A. J. Millis, Phys. Rev. B 48, 7183 (1993). 10.1103/PhysRevB.48.7183 Crossref, Google Scholar
- 22 See for example, H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, U.K., 2011). Google Scholar
- 23 K. Karube, T. Hattori, S. Kitagawa, K. Ishida, N. Kimura, and T. Komatsubara, Phys. Rev. B 86, 024428 (2012). 10.1103/PhysRevB.86.024428 Crossref, Google Scholar
- 24 M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl, Phys. Rev. Lett. 82, 4268 (1999). 10.1103/PhysRevLett.82.4268 Crossref, Google Scholar
- 25 C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Phys. Rev. B 55, 8330 (1997). 10.1103/PhysRevB.55.8330 Crossref, Google Scholar
- 26 Y. Shimizu, D. Braithwaite, B. Salce, T. Combier, D. Aoki, E. N. Hering, S. M. Ramos, and J. Flouquet, to be submitted. Google Scholar
- 27 See for example, H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985). Google Scholar