J. Phys. Soc. Jpn. 84, 073703 (2015) [5 Pages]

First-Principles Study on Cubic Pyrochlore Iridates Y2Ir2O7 and Pr2Ir2O7

+ Affiliations
1Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan2Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan3Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan4Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China5Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan6RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan

Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7. The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > Uc in the LSDA+U scheme, with Uc ∼ 1.1 eV and 1.3 eV for Y2Ir2O7 and Pr2Ir2O7, respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y2Ir2O7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μB/Ir, while Pr2Ir2O7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO6 octahedra, Pr2Ir2O7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of \(\Gamma _{8}^{ + }\), showing a quadratic band touching, to a Z2 topological insulator.

©2015 The Physical Society of Japan


  • 1 D. Yanagishima and Y. Maeno, J. Phys. Soc. Jpn. 70, 2880 (2001). 10.1143/JPSJ.70.2880 LinkGoogle Scholar
  • 2 Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Nature 463, 210 (2010). 10.1038/nature08680 CrossrefGoogle Scholar
  • 3 S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and J. Y. Chan, Phys. Rev. Lett. 96, 087204 (2006). 10.1103/PhysRevLett.96.087204 CrossrefGoogle Scholar
  • 4 K. Matsuhira, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Jpn. 80, 094701 (2011). 10.1143/JPSJ.80.094701 LinkGoogle Scholar
  • 5 N. Taira, M. Wakeshima, and Y. Hinatsu, J. Phys.: Condens. Matter 13, 5527 (2001). 10.1088/0953-8984/13/23/312 CrossrefGoogle Scholar
  • 6 S. M. Disseler, C. Dhital, A. Amato, S. R. Giblin, C. de la Cruz, S. D. Wilson, and M. J. Graf, Phys. Rev. B 86, 014428 (2012). 10.1103/PhysRevB.86.014428 CrossrefGoogle Scholar
  • 7 A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang, and N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009). 10.1103/PhysRevLett.102.256403 CrossrefGoogle Scholar
  • 8 B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009). 10.1126/science.1167106 CrossrefGoogle Scholar
  • 9 L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007). 10.1103/PhysRevB.76.045302 CrossrefGoogle Scholar
  • 10 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 10.1103/RevModPhys.82.3045 CrossrefGoogle Scholar
  • 11 D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010). 10.1038/nphys1606 CrossrefGoogle Scholar
  • 12 B.-J. Yang and Y. B. Kim, Phys. Rev. B 82, 085111 (2010). 10.1103/PhysRevB.82.085111 CrossrefGoogle Scholar
  • 13 M. Kurita, Y. Yamaji, and M. Imada, J. Phys. Soc. Jpn. 80, 044708 (2011). 10.1143/JPSJ.80.044708 LinkGoogle Scholar
  • 14 X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011). 10.1103/PhysRevB.83.205101 CrossrefGoogle Scholar
  • 15 W. Witczak-Krempa, A. Go, and Y. Kim, Phys. Rev. B 87, 155101 (2013). 10.1103/PhysRevB.87.155101 CrossrefGoogle Scholar
  • 16 K. Tomiyasu, K. Matsuhira, K. Iwasa, M. Watahiki, S. Takagi, M. Wakeshima, Y. Hinatsu, M. Yokoyama, K. Ohoyama, and K. Yamada, J. Phys. Soc. Jpn. 81, 034709 (2012). 10.1143/JPSJ.81.034709 LinkGoogle Scholar
  • 17 H. Sagayama, D. Uematsu, T.-h. Arima, K. Sugimoto, J. J. Ishikawa, E. O’Farrell, and S. Nakatsuji, Phys. Rev. B 87, 100403 (2013). 10.1103/PhysRevB.87.100403 CrossrefGoogle Scholar
  • 18 X. Hu, A. Rüegg, and G. A. Fiete, Phys. Rev. B 86, 235141 (2012). 10.1103/PhysRevB.86.235141 CrossrefGoogle Scholar
  • 19 E.-G. Moon, C. Xu, Y. B. Kim, and L. Balents, Phys. Rev. Lett. 111, 206401 (2013). 10.1103/PhysRevLett.111.206401 CrossrefGoogle Scholar
  • 20 K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011). 10.1103/PhysRevB.84.075129 CrossrefGoogle Scholar
  •   (21) A2Ir2O7 (A: Y, rare-earth elements) compounds form the pyrochlore structure having the space group \(Fd\bar{3}m\). A3+ and Ir4+ ions are located at the Wykoff positions 16d \((1/2,1/2,1/2)\) and 16c \((0,0,0)\), respectively, while O−2 ions are located at the Wykoff positions 48f \((x,1/8,1/8)\) (O1) and 8b \((3/8,3/8,3/8)\) (O2). Google Scholar
  • 22 M. C. Shapiro, S. C. Riggs, M. B. Stone, C. R. de la Cruz, S. Chi, A. A. Podlesnyak, and I. R. Fisher, Phys. Rev. B 85, 214434 (2012). 10.1103/PhysRevB.85.214434 CrossrefGoogle Scholar
  • 23 J. N. Millican, R. T. Macaluso, S. Nakatsuji, Y. Machida, Y. Maeno, and J. Y. Chan, Mater. Res. Bull. 42, 928 (2007). 10.1016/j.materresbull.2006.08.011 CrossrefGoogle Scholar
  • 24 H. Jin, H. Jeong, T. Ozaki, and J. Yu, Phys. Rev. B 80, 075112 (2009). 10.1103/PhysRevB.80.075112 CrossrefGoogle Scholar
  • 25 T. Ozaki, H. Kino, J. Yu, M. J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, T. Ohwaki, H. Weng, and K. Terakura, Open source package for Material eXplorer [http://www.openmx-square.org]. Google Scholar
  • 26 (Supplemental Materials) Computational details. Google Scholar
  • 27 T. Oguchi, Hiroshima Linear-Augmented-Plane-Wave (HiLAPW) program package. Google Scholar
  • 28 H. Liu, W. Tong, L. Ling, S. Zhang, R. Zhang, L. Zhang, L. Pi, C. Zhang, and Y. Zhang, Solid State Commun. 179, 1 (2014). 10.1016/j.ssc.2013.11.004 CrossrefGoogle Scholar
  • 29 K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Jpn. 82, 023706 (2013). 10.7566/JPSJ.82.023706 LinkGoogle Scholar
  • 30 J. J. Ishikawa, E. C. T. O’Farrell, and S. Nakatsuji, Phys. Rev. B 85, 245109 (2012). 10.1103/PhysRevB.85.245109 CrossrefGoogle Scholar
  • 31 F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). 10.1103/PhysRevLett.102.226401 CrossrefGoogle Scholar
  • 32 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). 10.1063/1.1564060 CrossrefGoogle Scholar
  • 33 S. V. Faleev, M. Van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004). 10.1103/PhysRevLett.93.126406 CrossrefGoogle Scholar
  • 34 L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, Phys. Rev. Lett. 106, 217204 (2011). 10.1103/PhysRevLett.106.217204 CrossrefGoogle Scholar
  • 35 H. Shinaoka, S. Hoshino, M. Troyer, and P. Werner, arXiv:1504.03962. Google Scholar
  • 36 H. Zhang, K. Haule, and D. Vanderbilt, arXiv:1505.01203. Google Scholar
  • 37 M. Nakayama, T. Kondo, Z. Tian, M. Halim, J. J. Ishikawa, R. Chen, E. G. Moon, M. Matsunami, W. Malaeb, B. Cédric, S. Akebi, Y. Ishida, H. Kumigashira, K. Ono, S. Kimura, L. Balents, S. Nakatsuji, and S. Shin, JPS 70th Annual Meet., 2015, 22aBC-11. Google Scholar