J. Phys. Soc. Jpn. 84, 073704 (2015) [4 Pages]

Ferromagnetic Transition at 2.5 K in the Hexagonal Kondo-Lattice Compound CeRh6Ge4

+ Affiliations
1Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan2Center for Supports to Research and Education Activities, Kobe University, Kobe 657-8501, Japan3Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan4Institute of Solid State Physics, Vienna University of Technology, Wien A-1040, Austria

Magnetization, specific heat, and electrical resistivity measurements have been performed for polycrystalline samples of hexagonal CeRh6Ge4 and CeRh6Si4. The Ce ions in CeRh6Ge4 are trivalent above 100 K, while those in CeRh6Si4 display an intermediate-valence state below room temperature. We discovered that CeRh6Ge4 is a new ferromagnetic (FM) compound with the transition temperature TC = 2.5 K. The −lnT dependence of the magnetic part of the electrical resistivity, the small magnetic entropy released at TC (0.19Rln2), and the relatively large electronic specific-heat coefficient (0.25 J·mol−1·K−2) imply that CeRh6Ge4 is a Kondo-lattice compound. We argue that CeRh6Ge4 is a rare Ce-based FM compound with a proximity to a quantum critical point.

©2015 The Physical Society of Japan


  • 1 S. Doniach, Physica B+C 91, 231 (1977). 10.1016/0378-4363(77)90190-5 CrossrefGoogle Scholar
  • 2 D. Jaccard, K. Behnia, and J. Sierro, Phys. Lett. A 163, 475 (1992). 10.1016/0375-9601(92)90860-O CrossrefGoogle Scholar
  • 3 N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Phys. Rev. Lett. 95, 247004 (2005). 10.1103/PhysRevLett.95.247004 CrossrefGoogle Scholar
  • 4 S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000). 10.1038/35020500 CrossrefGoogle Scholar
  • 5 C. Krellner, N. S. Kini, E. M. Brüning, K. Koch, H. Rosner, M. Nicklas, M. Baenitz, and C. Geibel, Phys. Rev. B 76, 104418 (2007). 10.1103/PhysRevB.76.104418 CrossrefGoogle Scholar
  • 6 E. Matsuoka, Y. Tomiyama, H. Sugawara, T. Sakurai, and H. Ohta, J. Phys. Soc. Jpn. 81, 043704 (2012). 10.1143/JPSJ.81.043704 LinkGoogle Scholar
  • 7 R. E. Baumbach, H. Chudo, H. Yasuoka, F. Ronning, E. D. Bauer, and J. D. Thompson, Phys. Rev. B 85, 094422 (2012). 10.1103/PhysRevB.85.094422 CrossrefGoogle Scholar
  • 8 V. H. Tran and Z. Bukowski, J. Phys.: Condens. Matter 26, 255602 (2014). 10.1088/0953-8984/26/25/255602 CrossrefGoogle Scholar
  • 9 F. Failamani, A. Grytsiv, R. Podloucky, H. Michor, E. Bauer, P. Brož, G. Giester, and P. Rogl, RSC Adv. 5, 36480 (2015). 10.1039/C5RA02789F CrossrefGoogle Scholar
  • 10 D. Voßwinkel, O. Niehaus, Ute Ch. Rodewald, and R. Pöttgen, Z. Naturforsch. B 67, 1241 (2012). 10.5560/ZNB.2012-0265 CrossrefGoogle Scholar
  • 11 A. Lipatov, A. Gribanov, A. Grytsiv, S. Safronov, P. Rogl, J. Rousnyak, Y. Seropegin, and G. Giester, J. Solid State Chem. 183, 829 (2010). 10.1016/j.jssc.2010.01.029 CrossrefGoogle Scholar
  • 12 D. Voßwinkel, O. Niehaus, and R. Pöttgen, Z. Anorg. Allg. Chem. 639, 2623 (2013). 10.1002/zaac.201300369 CrossrefGoogle Scholar
  • 13 H.-U. Desgranges and K. D. Schotte, Phys. Lett. A 91, 240 (1982). 10.1016/0375-9601(82)90481-9 CrossrefGoogle Scholar
  • 14 A. Böhm, R. Caspary, U. Habel, L. Pawlak, A. Zuber, F. Steglich, and A. Loidl, J. Magn. Magn. Mater. 76–77, 150 (1988). 10.1016/0304-8853(88)90347-2 CrossrefGoogle Scholar
  • 15 Y. Ōnuki, Y. Furukawa, and T. Komatsubara, J. Phys. Soc. Jpn. 53, 2734 (1984). 10.1143/JPSJ.53.2734 LinkGoogle Scholar
  • 16 K. Hanzawa, K. Yamada, and K. Yosida, J. Magn. Magn. Mater. 47–48, 357 (1985). 10.1016/0304-8853(85)90438-X CrossrefGoogle Scholar