- Full text:
- PDF (eReader) / PDF (Download) (1880 kB)
In the replica-permutation method (RPM), temperatures are not only exchanged between two replicas but also permutated among more than two replicas using the Suwa–Todo algorithm, which minimizes the rejection ratio in Monte Carlo trials. We verify the sampling efficiency of RPM that adopts Suwa–Todo algorithms with and without a detailed balance condition (DBC). To compare these techniques, molecular dynamics simulations of RPM with and without the DBC and the replica-exchange method (REM) were carried out for a chignolin molecule in explicit water. Although no difference in the numbers of folding and unfolding events was observed, the numbers of tunneling events of the two RPM simulations were larger than that of REM. This indicates that the minimization of the rejection ratio by the Suwa–Todo algorithm in RPM realizes efficient sampling. Furthermore, the sampling efficiency was slightly higher in the RPM without the DBC than in that with the DBC. The reason for this difference is also discussed.
References
- 1 A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001). 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO%3B2-F Crossref, Google Scholar
- 2 S. G. Itoh, H. Okumura, and Y. Okamoto, Mol. Simulation 33, 47 (2007). 10.1080/08927020601096812 Crossref, Google Scholar
- 3 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114 Crossref, Google Scholar
- 4 W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. 48, 1818 (1982). 10.1103/PhysRevLett.48.1818 Crossref, Google Scholar
- 5 D. J. Evans, J. Chem. Phys. 78, 3297 (1983). 10.1063/1.445195 Crossref, Google Scholar
- 6 S. Nosé, Mol. Phys. 52, 255 (1984). 10.1080/00268978400101201 Crossref, Google Scholar
- 7 S. Nosé, J. Chem. Phys. 81, 511 (1984). 10.1063/1.447334 Crossref, Google Scholar
- 8 W. G. Hoover, Phys. Rev. A 31, 1695 (1985). 10.1103/PhysRevA.31.1695 Crossref, Google Scholar
- 9 K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). 10.1143/JPSJ.65.1604 Link, Google Scholar
- 10 Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999). 10.1016/S0009-2614(99)01123-9 Crossref, Google Scholar
- 11 S. G. Itoh and H. Okumura, J. Chem. Theory Comput. 9, 570 (2013). 10.1021/ct3007919 Crossref, Google Scholar
- 12 S. G. Itoh and H. Okumura, J. Comput. Chem. 34, 2493 (2013). 10.1002/jcc.23402 Crossref, Google Scholar
- 13 S. G. Itoh and H. Okumura, J. Phys. Chem. B 118, 11428 (2014). 10.1021/jp505984e Crossref, Google Scholar
- 14 H. Suwa and S. Todo, Phys. Rev. Lett. 105, 120603 (2010). 10.1103/PhysRevLett.105.120603 Crossref, Google Scholar
- 15 H. Suwa, Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin–Phonon Complex Systems (Springer Japan, Tokyo, 2014) Chap. 2, p. 11. 10.1007/978-4-431-54517-0_2 Crossref, Google Scholar
- 16 D. van der Spoel and M. M. Seibert, Phys. Rev. Lett. 96, 238102 (2006). 10.1103/PhysRevLett.96.238102 Crossref, Google Scholar
- 17 H. Okumura, Proteins 80, 2397 (2012). 10.1002/prot.24125 Crossref, Google Scholar
- 18 Y. Mori and Y. Okamoto, J. Phys. Soc. Jpn. 79, 074001 (2010). 10.1143/JPSJ.79.074001 Link, Google Scholar
- 19 H. Okumura and Y. Okamoto, J. Phys. Chem. B 112, 12038 (2008). 10.1021/jp712109q Crossref, Google Scholar
- 20 H. Okumura and S. G. Itoh, Phys. Chem. Chem. Phys. 15, 13852 (2013). 10.1039/c3cp44443k Crossref, Google Scholar
- 21 H. Okumura and S. G. Itoh, J. Am. Chem. Soc. 136, 10549 (2014). 10.1021/ja502749f Crossref, Google Scholar
- 22 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995). 10.1021/ja00124a002 Crossref, Google Scholar
- 23 V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins 65, 712 (2006). 10.1002/prot.21123 Crossref, Google Scholar
- 24 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983). 10.1063/1.445869 Crossref, Google Scholar
- 25 U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995). 10.1063/1.470117 Crossref, Google Scholar
- 26 M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992). 10.1063/1.463137 Crossref, Google Scholar
- 27 H. Okumura, S. G. Itoh, and Y. Okamoto, J. Chem. Phys. 126, 084103 (2007). 10.1063/1.2434972 Crossref, Google Scholar
- 28 T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna, J. Chem. Phys. 116, 8649 (2002). 10.1063/1.1473654 Crossref, Google Scholar
- 29 R. A. Sayle and E. J. Milner-White, Trends Biochem. Sci. 20, 374 (1995). 10.1016/S0968-0004(00)89080-5 Crossref, Google Scholar
- 30 B. Efron, Ann. Stat. 7, 1 (1979). 10.1214/aos/1176344552 Crossref, Google Scholar