J. Phys. Soc. Jpn. 84, 074801 (2015) [6 Pages]
FULL PAPERS

Comparison of Replica-Permutation Molecular Dynamics Simulations with and without Detailed Balance Condition

+ Affiliations
1Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan2Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan

In the replica-permutation method (RPM), temperatures are not only exchanged between two replicas but also permutated among more than two replicas using the Suwa–Todo algorithm, which minimizes the rejection ratio in Monte Carlo trials. We verify the sampling efficiency of RPM that adopts Suwa–Todo algorithms with and without a detailed balance condition (DBC). To compare these techniques, molecular dynamics simulations of RPM with and without the DBC and the replica-exchange method (REM) were carried out for a chignolin molecule in explicit water. Although no difference in the numbers of folding and unfolding events was observed, the numbers of tunneling events of the two RPM simulations were larger than that of REM. This indicates that the minimization of the rejection ratio by the Suwa–Todo algorithm in RPM realizes efficient sampling. Furthermore, the sampling efficiency was slightly higher in the RPM without the DBC than in that with the DBC. The reason for this difference is also discussed.

©2015 The Physical Society of Japan

References

  • 1 A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001). 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO%3B2-F CrossrefGoogle Scholar
  • 2 S. G. Itoh, H. Okumura, and Y. Okamoto, Mol. Simulation 33, 47 (2007). 10.1080/08927020601096812 CrossrefGoogle Scholar
  • 3 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114 CrossrefGoogle Scholar
  • 4 W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. 48, 1818 (1982). 10.1103/PhysRevLett.48.1818 CrossrefGoogle Scholar
  • 5 D. J. Evans, J. Chem. Phys. 78, 3297 (1983). 10.1063/1.445195 CrossrefGoogle Scholar
  • 6 S. Nosé, Mol. Phys. 52, 255 (1984). 10.1080/00268978400101201 CrossrefGoogle Scholar
  • 7 S. Nosé, J. Chem. Phys. 81, 511 (1984). 10.1063/1.447334 CrossrefGoogle Scholar
  • 8 W. G. Hoover, Phys. Rev. A 31, 1695 (1985). 10.1103/PhysRevA.31.1695 CrossrefGoogle Scholar
  • 9 K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). 10.1143/JPSJ.65.1604 LinkGoogle Scholar
  • 10 Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999). 10.1016/S0009-2614(99)01123-9 CrossrefGoogle Scholar
  • 11 S. G. Itoh and H. Okumura, J. Chem. Theory Comput. 9, 570 (2013). 10.1021/ct3007919 CrossrefGoogle Scholar
  • 12 S. G. Itoh and H. Okumura, J. Comput. Chem. 34, 2493 (2013). 10.1002/jcc.23402 CrossrefGoogle Scholar
  • 13 S. G. Itoh and H. Okumura, J. Phys. Chem. B 118, 11428 (2014). 10.1021/jp505984e CrossrefGoogle Scholar
  • 14 H. Suwa and S. Todo, Phys. Rev. Lett. 105, 120603 (2010). 10.1103/PhysRevLett.105.120603 CrossrefGoogle Scholar
  • 15 H. Suwa, Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin–Phonon Complex Systems (Springer Japan, Tokyo, 2014) Chap. 2, p. 11. 10.1007/978-4-431-54517-0_2 CrossrefGoogle Scholar
  • 16 D. van der Spoel and M. M. Seibert, Phys. Rev. Lett. 96, 238102 (2006). 10.1103/PhysRevLett.96.238102 CrossrefGoogle Scholar
  • 17 H. Okumura, Proteins 80, 2397 (2012). 10.1002/prot.24125 CrossrefGoogle Scholar
  • 18 Y. Mori and Y. Okamoto, J. Phys. Soc. Jpn. 79, 074001 (2010). 10.1143/JPSJ.79.074001 LinkGoogle Scholar
  • 19 H. Okumura and Y. Okamoto, J. Phys. Chem. B 112, 12038 (2008). 10.1021/jp712109q CrossrefGoogle Scholar
  • 20 H. Okumura and S. G. Itoh, Phys. Chem. Chem. Phys. 15, 13852 (2013). 10.1039/c3cp44443k CrossrefGoogle Scholar
  • 21 H. Okumura and S. G. Itoh, J. Am. Chem. Soc. 136, 10549 (2014). 10.1021/ja502749f CrossrefGoogle Scholar
  • 22 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995). 10.1021/ja00124a002 CrossrefGoogle Scholar
  • 23 V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins 65, 712 (2006). 10.1002/prot.21123 CrossrefGoogle Scholar
  • 24 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983). 10.1063/1.445869 CrossrefGoogle Scholar
  • 25 U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995). 10.1063/1.470117 CrossrefGoogle Scholar
  • 26 M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992). 10.1063/1.463137 CrossrefGoogle Scholar
  • 27 H. Okumura, S. G. Itoh, and Y. Okamoto, J. Chem. Phys. 126, 084103 (2007). 10.1063/1.2434972 CrossrefGoogle Scholar
  • 28 T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna, J. Chem. Phys. 116, 8649 (2002). 10.1063/1.1473654 CrossrefGoogle Scholar
  • 29 R. A. Sayle and E. J. Milner-White, Trends Biochem. Sci. 20, 374 (1995). 10.1016/S0968-0004(00)89080-5 CrossrefGoogle Scholar
  • 30 B. Efron, Ann. Stat. 7, 1 (1979). 10.1214/aos/1176344552 CrossrefGoogle Scholar