J. Phys. Soc. Jpn. 84, 113702 (2015) [5 Pages]
LETTERS

Photoinduced Phase Transition in Charge Order Systems—Charge Frustration and Interplay with Lattice—

+ Affiliations
1Department of Physics, Tohoku University, Sendai 980-8578, Japan2Sendai National College of Technology, Sendai 989-3128, Japan3Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan4RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

Lattice effects on photoexcited states in an interacting charge-frustrated system are examined. Real-time dynamics in the interacting spinless fermion model on a triangular lattice coupled to lattice vibration are analyzed by applying the exact diagonalization method combined with the classical equation of motion. A photoinduced phase transition from the horizontal stripe-type charge order (CO) to the 3-fold CO occurs through a characteristic intermediate time domain. By analyzing the time evolution in detail, we find that these characteristic dynamics are seen when the electron and lattice sectors are not complementary to each other but show cooperative time evolutions. The dynamics are distinct from those from the vertical stripe-type CO, in which a monotonic CO melting occurs. A scenario of the photoinduced CO phase transition with lattice degree of freedom is presented from the viewpoint of charge frustration.

©2015 The Physical Society of Japan

References

  • 1 K. Yamamoto, S. Iwai, S. Boyko, A. Kashiwazaki, F. Hiramatsu, C. Okabe, N. Nishi, and K. Yakushi, J. Phys. Soc. Jpn. 77, 074709 (2008). 10.1143/JPSJ.77.074709 LinkGoogle Scholar
  • 2 Y. Tomioka and Y. Tokura, Phys. Rev. B 70, 014432 (2004). 10.1103/PhysRevB.70.014432 CrossrefGoogle Scholar
  • 3 J. D. Axe, A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Y. Xu, Phys. Rev. Lett. 62, 2751 (1989). 10.1103/PhysRevLett.62.2751 CrossrefGoogle Scholar
  • 4 P. W. Anderson, Phys. Rev. 102, 1008 (1956). 10.1103/PhysRev.102.1008 CrossrefGoogle Scholar
  • 5 E. J. W. Verwey and P. W. Haaymann, Physica 8, 979 (1941). 10.1016/S0031-8914(41)80005-6 CrossrefGoogle Scholar
  • 6 Y. Kawakami, T. Fukatsu, Y. Sakurai, H. Unno, H. Itoh, S. Iwai, T. Sasaki, K. Yamamoto, K. Yakushi, and K. Yonemitsu, Phys. Rev. Lett. 105, 246402 (2010). 10.1103/PhysRevLett.105.246402 CrossrefGoogle Scholar
  • 7 T. Ishikawa, Y. Sagae, Y. Naitoh, Y. Kawakami, H. Itoh, K. Yamamoto, K. Yakushi, H. Kishida, T. Sasaki, S. Ishihara, Y. Tanaka, K. Yonemitsu, and S. Iwai, Nat. Commun. 5, 5528 (2014). 10.1038/ncomms6528 CrossrefGoogle Scholar
  • 8 K. Onda, S. Ogihara, K. Yonemitsu, N. Maeshima, T. Ishikawa, Y. Okimoto, X. Shao, Y. Nakano, H. Yamochi, G. Saito, and S. Koshihara, Phys. Rev. Lett. 101, 067403 (2008). 10.1103/PhysRevLett.101.067403 CrossrefGoogle Scholar
  • 9 M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S. Koshihara, Y. Nakano, X. F. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, and R. J. D. Miller, Nature 496, 343 (2013). 10.1038/nature12044 CrossrefGoogle Scholar
  • 10 P. Beaud, A. Caviezel, S. O. Mariager, L. Retting, G. Ingold, C. Dornes, S.-W. Huang, J. A. Johnson, M. Radovic, T. Huber, T. Kubacka, A. Ferrer, H. T. Lemke, M. Chollet, D. Zhu, J. M. Glownia, M. Sikorski, A. Robert, H. Wadati, M. Nakamura, M. Kawasaki, Y. Tokura, S. L. Johnson, and U. Staub, Nat. Mater. 13, 923 (2014). 10.1038/nmat4046 CrossrefGoogle Scholar
  • 11 K. Yonemitsu and N. Maeshima, Phys. Rev. B 76, 075105 (2007). 10.1103/PhysRevB.76.075105 CrossrefGoogle Scholar
  • 12 J. Rincón, L. A. Al-Hassanieh, A. E. Feiguin, and E. Dagotto, Phys. Rev. B 90, 155112 (2014). 10.1103/PhysRevB.90.155112 CrossrefGoogle Scholar
  • 13 K. Yonemitsu, Crystals 2, 56 (2012). 10.3390/cryst2010056 CrossrefGoogle Scholar
  • 14 J. Merino, H. Seo, and M. Ogata, Phys. Rev. B 71, 125111 (2005). 10.1103/PhysRevB.71.125111 CrossrefGoogle Scholar
  • 15 Y. Tanaka and K. Yonemitsu, J. Phys. Soc. Jpn. 77, 034708 (2008). 10.1143/JPSJ.77.034708 LinkGoogle Scholar
  • 16 S. Miyashita and K. Yonemitsu, Phys. Rev. B 75, 245112 (2007). 10.1103/PhysRevB.75.245112 CrossrefGoogle Scholar
  • 17 C. Hotta, N. Furukawa, A. Nakagawa, and K. Kubo, J. Phys. Soc. Jpn. 75, 123704 (2006). 10.1143/JPSJ.75.123704 LinkGoogle Scholar
  • 18 S. Nishimoto, M. Shingai, and Y. Ohta, Phys. Rev. B 78, 035113 (2008). 10.1103/PhysRevB.78.035113 CrossrefGoogle Scholar
  • 19 S. Nishimoto and C. Hotta, Phys. Rev. B 79, 195124 (2009). 10.1103/PhysRevB.79.195124 CrossrefGoogle Scholar
  • 20 M. Miyazaki, C. Hotta, S. Miyahara, K. Matsuda, and N. Furukawa, J. Phys. Soc. Jpn. 78, 014707 (2009). 10.1143/JPSJ.78.014707 LinkGoogle Scholar
  • 21 M. Naka and H. Seo, J. Phys. Soc. Jpn. 83, 053706 (2014). 10.7566/JPSJ.83.053706 LinkGoogle Scholar
  • 22 H. Hashimoto, H. Matsueda, H. Seo, and S. Ishihara, J. Phys. Soc. Jpn. 83, 123703 (2014). 10.7566/JPSJ.83.123703 LinkGoogle Scholar
  • 23 T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986). 10.1063/1.451548 CrossrefGoogle Scholar
  • 24 P. Prelovsek and J. Bonca, arXiv:1111.5931. Google Scholar
  • 25 H. Gomi, T. Kawatani, T. J. Inagaki, and A. Takahashi, J. Phys. Soc. Jpn. 83, 094714 (2014). 10.7566/JPSJ.83.094714 LinkGoogle Scholar
  •   (26) In the initial states for the Newtonian equation, small random lattice distortions (δqi) and momenta (δpi) are introduced in order to break a high symmetry in a cluster, in which the condition \(\omega _{\text{lat}}(\delta q_{i}^{2} + \delta p_{i}^{2})/2 = 10^{ - 6}t\) is satisfied at each site. Google Scholar