J. Phys. Soc. Jpn. 85, 073701 (2016) [4 Pages]

Chiral Magnetism in an Itinerant Helical Magnet, MnSi — An Extended 29Si NMR Study —

+ Affiliations
1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan3Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan4Institute of Physics, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany

The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

©2016 The Physical Society of Japan


  • 1 H. J. Williams, J. H. Wernick, R. C. Sherwood, and G. K. Werthheim, J. Appl. Phys. 37, 1256 (1966). 10.1063/1.1708422 CrossrefGoogle Scholar
  • 2 K. Motoya, H. Yasuoka, Y. Nakamura, and J. H. Wernick, Solid State Commun. 19, 529 (1976); 10.1016/0038-1098(76)90058-2 Crossref;, Google ScholarK. Motoya, H. Yasuoka, Y. Nakamura, V. Jaccarino, and J. H. Wernick, J. Phys. Soc. Jpn. 44, 833 (1978). 10.1143/JPSJ.44.833 LinkGoogle Scholar
  • 3 Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19, 525 (1976); 10.1016/0038-1098(76)90057-0 Crossref;, Google ScholarY. Ishikawa, T. Komatsubara, and D. Bloch, Physica B+C 86–88, 401 (1977). 10.1016/0378-4363(77)90364-3 CrossrefGoogle Scholar
  • 4 H. Yasuoka, V. Jaccarino, R. C. Sherwood, and J. H. Wernick, J. Phys. Soc. Jpn. 44, 842 (1978). 10.1143/JPSJ.44.842 LinkGoogle Scholar
  • 5 Y. Ishikawa, G. Shirane, and J. A. Tarvin, Phys. Rev. B 16, 4956 (1977). 10.1103/PhysRevB.16.4956 CrossrefGoogle Scholar
  • 6 T. Moriya and A. Kawabata, J. Phys. Soc. Jpn. 34, 639 (1973); 10.1143/JPSJ.34.639 Link;, Google ScholarT. Moriya and A. Kawabata, J. Phys. Soc. Jpn. 35, 669 (1973). 10.1143/JPSJ.35.669 LinkGoogle Scholar
  • 7 K. Makoshi and T. Moriya, J. Phys. Soc. Jpn. 44, 80 (1978). 10.1143/JPSJ.44.80 LinkGoogle Scholar
  • 8 A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110, 177207 (2013). 10.1103/PhysRevLett.110.177207 CrossrefGoogle Scholar
  • 9 M. Janoschek, F. Jonietz, P. Link, C. Pfleiderer, and P. Böni, J. Phys. 200, 032026 (2010). 10.1088/1742-6596/200/3/032026 CrossrefGoogle Scholar
  • 10 M. Corti, F. Carbone, M. Filibian, Th. Jarlborg, A. A. Nugroho, and P. Carretta, Phys. Rev. B 75, 115111 (2007). 10.1103/PhysRevB.75.115111 CrossrefGoogle Scholar
  • 11 T. Moriya, Solid State Commun. 20, 291 (1976). 10.1016/0038-1098(76)90198-8 CrossrefGoogle Scholar