- Full text:
- PDF (eReader) / PDF (Download) (1290 kB)
We observed the tensile deformation of molybdenum (Mo) nanocontacts (NCs) and simultaneously measured their conductance by in situ transmission electron microscopy. During deformation, the contact width decreased from several nanometers to a single-atom size. Mo NCs were thinned via a plastic flowlike deformation process. The process differs from the slip on lattice planes, which is frequently observed in NCs made of noble metals. We plotted histograms of the time–conductance traces measured during the tensile deformation of Mo NCs. In the conductance histograms, we observed peaks at 1.8G0 (G0 = 2e2/h, where e is the electron charge and h is Planck’s constant), 3.6G0, and 4.4G0. When the minimum conductance (1.8G0) was measured, the minimum cross-sectional widths of the NCs were 3–7 atoms. These NCs exhibited relaxed structures that formed irregularly after the plastic flowlike deformation occurred in the final stage of the tensile process. We inferred that the aperiodic peaks observed in the conductance histograms originated from irregular variations in the contact areas and atomic configurations of the NCs during the plastic flowlike deformation. Moreover, the conductance value of the single-atom contacts was less than 0.1G0.
References
- 1 N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993). 10.1103/PhysRevB.47.12345 Crossref, Google Scholar
- 2 J. I. Pascual, J. Méndez, J. Gómez-Herrero, A. M. Baró, N. García, and V. T. Binh, Phys. Rev. Lett. 71, 1852 (1993). 10.1103/PhysRevLett.71.1852 Crossref, Google Scholar
- 3 T. N. Todorov and A. P. Sutton, Phys. Rev. Lett. 70, 2138 (1993). 10.1103/PhysRevLett.70.2138 Crossref, Google Scholar
- 4 A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B 52, 5036 (1995). 10.1103/PhysRevB.52.5036 Crossref, Google Scholar
- 5 J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature 375, 767 (1995). 10.1038/375767a0 Crossref, Google Scholar
- 6 G. Rubio, N. Agraït, and S. Vieira, Phys. Rev. Lett. 76, 2302 (1996). 10.1103/PhysRevLett.76.2302 Crossref, Google Scholar
- 7 C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Phys. Rev. B 53, 16086 (1996). 10.1103/PhysRevB.53.16086 Crossref, Google Scholar
- 8 A. Stalder and U. Dürig, J. Vac. Sci. Technol. B 14, 1259 (1996). 10.1116/1.588527 Crossref, Google Scholar
- 9 H. Yasuda and A. Sakai, Phys. Rev. B 56, 1069 (1997). 10.1103/PhysRevB.56.1069 Crossref, Google Scholar
- 10 J. L. Costa-Krämer, Phys. Rev. B 55, R4875 (1997). 10.1103/PhysRevB.55.R4875 Crossref, Google Scholar
- 11 N. D. Lang, Phys. Rev. Lett. 79, 1357 (1997). 10.1103/PhysRevLett.79.1357 Crossref, Google Scholar
- 12 J. C. Cuevas, A. L. Yeyati, and A. Martín-Rodero, Phys. Rev. Lett. 80, 1066 (1998). 10.1103/PhysRevLett.80.1066 Crossref, Google Scholar
- 13 M. R. Sørensen, M. Brandbyge, and K. W. Jacobsen, Phys. Rev. B 57, 3283 (1998). 10.1103/PhysRevB.57.3283 Crossref, Google Scholar
- 14 N. Kobayashi, M. Brandbyge, and M. Tsukada, Jpn. J. Appl. Phys. 38, 336 (1999). 10.1143/JJAP.38.336 Crossref, Google Scholar
- 15 E. G. Emberly and G. Kirczenow, Phys. Rev. B 60, 6028 (1999). 10.1103/PhysRevB.60.6028 Crossref, Google Scholar
- 16 K. Itakura, K. Yuki, S. Kurokawa, H. Yasuda, and A. Sakai, Phys. Rev. B 60, 11163 (1999). 10.1103/PhysRevB.60.11163 Crossref, Google Scholar
- 17 M. Okamoto and K. Takayanagi, Phys. Rev. B 60, 7808 (1999). 10.1103/PhysRevB.60.7808 Crossref, Google Scholar
- 18 V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000). 10.1103/PhysRevLett.85.4124 Crossref, Google Scholar
- 19 S. R. Bahn, N. Lopez, J. K. Nørskov, and W. Jacobson, Phys. Rev. B 66, 081405 (2002). 10.1103/PhysRevB.66.081405 Crossref, Google Scholar
- 20 H. Mehrez, A. Wlasenko, B. Larade, J. Taylor, P. Grütter, and H. Guo, Phys. Rev. B 65, 195419 (2002). 10.1103/PhysRevB.65.195419 Crossref, Google Scholar
- 21 S. K. Nielsen, M. Brandbyge, K. Hansen, K. Stokbro, J. M. van Ruitenbeek, and F. Besenbacher, Phys. Rev. Lett. 89, 066804 (2002). 10.1103/PhysRevLett.89.066804 Crossref, Google Scholar
- 22 N. Agraït, A. L. Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (2003). 10.1016/S0370-1573(02)00633-6 Crossref, Google Scholar
- 23 A. Fujii, M. Tsutsui, S. Kurokawa, and A. Sakai, Phys. Rev. B 72, 045407 (2005). 10.1103/PhysRevB.72.045407 Crossref, Google Scholar
- 24 D. den Boer, O. I. Shklyarevskii, and S. Speller, Physica B 395, 20 (2007). 10.1016/j.physb.2007.02.016 Crossref, Google Scholar
- 25 D. den Boer, O. I. Shklyarevskii, J. A. A. W. Elemans, and S. Speller, Phys. Rev. B 77, 165423 (2008). 10.1103/PhysRevB.77.165423 Crossref, Google Scholar
- 26 T. Kizuka, Phys. Rev. B 77, 155401 (2008). 10.1103/PhysRevB.77.155401 Crossref, Google Scholar
- 27 C. Q. Sun, Prog. Mater. Sci. 54, 179 (2009). 10.1016/j.pmatsci.2008.08.001 Crossref, Google Scholar
- 28 R. Suzuki, M. Tsutsui, D. Miura, S. Kurokawa, and A. Sakai, Jpn. J. Appl. Phys. 46, 3694 (2007). 10.1143/JJAP.46.3694 Crossref, Google Scholar
- 29 A. Takahashi, S. Kurokawa, and A. Sakai, Phys. Status Solidi A 209, 2151 (2012). 10.1002/pssa.201228190 Crossref, Google Scholar
- 30 J. N. Armstrong, S. Z. Hua, and H. D. Chopra, Phys. Rev. B 83, 235422 (2011). 10.1103/PhysRevB.83.235422 Crossref, Google Scholar
- 31 R. Landauer, IBM J. Res. Dev. 32, 306 (1988). 10.1147/rd.323.0306 Crossref, Google Scholar
- 32 H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. B 103, 8814 (1999). 10.1021/jp992787p Crossref, Google Scholar
- 33 H. Häkkinen, R. N. Barnett, A. G. Scherbakov, and U. Landman, J. Phys. Chem. B 104, 9063 (2000). 10.1021/jp002691r Crossref, Google Scholar
- 34 C. Q. Sun, C. M. Li, S. Li, and B. K. Tay, Phys. Rev. B 69, 245402 (2004). 10.1103/PhysRevB.69.245402 Crossref, Google Scholar
- 35 C. Q. Sun, H. L. Bai, S. Li, B. K. Tay, C. Li, T. P. Chen, and E. Y. Jiang, J. Phys. Chem. B 108, 2162 (2004).10.1021/jp035815j Crossref, Google Scholar
- 36 J. Mizobata, A. Fujii, S. Kurokawa, and A. Sakai, Jpn. J. Appl. Phys. 42, 4680 (2003). 10.1143/JJAP.42.4680 Crossref, Google Scholar
- 37 I. K. Yanson, O. I. Shklyarevskii, J. M. van Ruitenbeek, and S. Speller, Phys. Rev. B 77, 033411 (2008). 10.1103/PhysRevB.77.033411 Crossref, Google Scholar
- 38 T. Minowa, A. Fujii, M. Takeda, S. Kurokawa, and A. Sakai, Appl. Surf. Sci. 241, 14 (2005). 10.1016/j.apsusc.2004.09.010 Crossref, Google Scholar
- 39 T. Kizuka, H. Ohmi, T. Sumi, K. Kumazawa, S. Deguchi, M. Naruse, S. Fujisawa, S. Sasaki, A. Yabe, and Y. Enomoto, Jpn. J. Appl. Phys. 40, L170 (2001). 10.1143/JJAP.40.L170 Crossref, Google Scholar
- 40 M. Ryu and T. Kizuka, Jpn. J. Appl. Phys. 45, 8952 (2006). 10.1143/JJAP.45.8952 Crossref, Google Scholar
- 41 T. Kizuka and K. Monna, Phys. Rev. B 80, 205406 (2009). 10.1103/PhysRevB.80.205406 Crossref, Google Scholar
- 42 H. Masuda, K. Monna, T. Matsuda, and T. Kizuka, e-J. Surf. Sci. Nanotechnol. 7, 549 (2009). 10.1380/ejssnt.2009.549 Crossref, Google Scholar
- 43 H. Masuda and T. Kizuka, Jpn. J. Appl. Phys. 49, 045202 (2010). 10.1143/JJAP.49.045202 Crossref, Google Scholar
- 44 H. Masuda and T. Kizuka, J. Phys. Soc. Jpn. 81, 114707 (2012). 10.1143/JPSJ.81.114707 Link, Google Scholar
- 45 S. Kodama and T. Kizuka, J. Nanosci. Nanotechnol. 12, 1001 (2012). 10.1166/jnn.2012.5878 Crossref, Google Scholar
- 46 T. Kizuka and S. Kodama, J. Phys. Soc. Jpn. 83, 104602 (2014). 10.7566/JPSJ.83.104602 Link, Google Scholar
- 47 T. Ohko and T. Kizuka, J. Nanosci. Nanotechnol. 15, 5484 (2015). 10.1166/jnn.2015.9599 Crossref, Google Scholar
- 48 Supplemental material for the structural deformation process is provided online. Google Scholar
- 49 T. Kizuka, Phys. Rev. B 57, 11158 (1998). 10.1103/PhysRevB.57.11158 Crossref, Google Scholar
- 50 T. Matsuda and T. Kizuka, Jpn. J. Appl. Phys. 48, 115003 (2009). 10.1143/JJAP.48.115003 Crossref, Google Scholar
- 51 J. Feng and T. Kizuka, J. Nanosci. Nanotechnol. 13, 394 (2013). 10.1166/jnn.2013.6899 Crossref, Google Scholar
- 52 T. Kizuka and S. Ashida, Sci. Rep. 5, 13529 (2015). 10.1038/srep13529 Crossref, Google Scholar
- 53 J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger, Malabar, FL, 1992) 2nd ed. Google Scholar
- 54 G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longmans, London, 1986). Google Scholar
- 55 B. Ludoph, N. van der Post, E. N. Bratus’, E. V. Bezuglyi, V. S. Shumeiko, G. Wendin, and J. M. van Ruitenbeek, Phys. Rev. B 61, 8561 (2000). 10.1103/PhysRevB.61.8561 Crossref, Google Scholar
- 56 V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte, Phys. Rev. Lett. 91, 096801 (2003). 10.1103/PhysRevLett.91.096801 Crossref, Google Scholar