J. Phys. Soc. Jpn. 85, 104601 (2016) [4 Pages]
FULL PAPERS

Plastic Flowlike Deformation and Its Relation to Aperiodic Peaks in Conductance Histograms of Molybdenum Nanocontacts

Akira Sakai
JPSJ News Comments 13,  11 (2016).

+ Affiliations
Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

We observed the tensile deformation of molybdenum (Mo) nanocontacts (NCs) and simultaneously measured their conductance by in situ transmission electron microscopy. During deformation, the contact width decreased from several nanometers to a single-atom size. Mo NCs were thinned via a plastic flowlike deformation process. The process differs from the slip on lattice planes, which is frequently observed in NCs made of noble metals. We plotted histograms of the time–conductance traces measured during the tensile deformation of Mo NCs. In the conductance histograms, we observed peaks at 1.8G0 (G0 = 2e2/h, where e is the electron charge and h is Planck’s constant), 3.6G0, and 4.4G0. When the minimum conductance (1.8G0) was measured, the minimum cross-sectional widths of the NCs were 3–7 atoms. These NCs exhibited relaxed structures that formed irregularly after the plastic flowlike deformation occurred in the final stage of the tensile process. We inferred that the aperiodic peaks observed in the conductance histograms originated from irregular variations in the contact areas and atomic configurations of the NCs during the plastic flowlike deformation. Moreover, the conductance value of the single-atom contacts was less than 0.1G0.

©2016 The Physical Society of Japan

References

  • 1 N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993). 10.1103/PhysRevB.47.12345 CrossrefGoogle Scholar
  • 2 J. I. Pascual, J. Méndez, J. Gómez-Herrero, A. M. Baró, N. García, and V. T. Binh, Phys. Rev. Lett. 71, 1852 (1993). 10.1103/PhysRevLett.71.1852 CrossrefGoogle Scholar
  • 3 T. N. Todorov and A. P. Sutton, Phys. Rev. Lett. 70, 2138 (1993). 10.1103/PhysRevLett.70.2138 CrossrefGoogle Scholar
  • 4 A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B 52, 5036 (1995). 10.1103/PhysRevB.52.5036 CrossrefGoogle Scholar
  • 5 J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature 375, 767 (1995). 10.1038/375767a0 CrossrefGoogle Scholar
  • 6 G. Rubio, N. Agraït, and S. Vieira, Phys. Rev. Lett. 76, 2302 (1996). 10.1103/PhysRevLett.76.2302 CrossrefGoogle Scholar
  • 7 C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Phys. Rev. B 53, 16086 (1996). 10.1103/PhysRevB.53.16086 CrossrefGoogle Scholar
  • 8 A. Stalder and U. Dürig, J. Vac. Sci. Technol. B 14, 1259 (1996). 10.1116/1.588527 CrossrefGoogle Scholar
  • 9 H. Yasuda and A. Sakai, Phys. Rev. B 56, 1069 (1997). 10.1103/PhysRevB.56.1069 CrossrefGoogle Scholar
  • 10 J. L. Costa-Krämer, Phys. Rev. B 55, R4875 (1997). 10.1103/PhysRevB.55.R4875 CrossrefGoogle Scholar
  • 11 N. D. Lang, Phys. Rev. Lett. 79, 1357 (1997). 10.1103/PhysRevLett.79.1357 CrossrefGoogle Scholar
  • 12 J. C. Cuevas, A. L. Yeyati, and A. Martín-Rodero, Phys. Rev. Lett. 80, 1066 (1998). 10.1103/PhysRevLett.80.1066 CrossrefGoogle Scholar
  • 13 M. R. Sørensen, M. Brandbyge, and K. W. Jacobsen, Phys. Rev. B 57, 3283 (1998). 10.1103/PhysRevB.57.3283 CrossrefGoogle Scholar
  • 14 N. Kobayashi, M. Brandbyge, and M. Tsukada, Jpn. J. Appl. Phys. 38, 336 (1999). 10.1143/JJAP.38.336 CrossrefGoogle Scholar
  • 15 E. G. Emberly and G. Kirczenow, Phys. Rev. B 60, 6028 (1999). 10.1103/PhysRevB.60.6028 CrossrefGoogle Scholar
  • 16 K. Itakura, K. Yuki, S. Kurokawa, H. Yasuda, and A. Sakai, Phys. Rev. B 60, 11163 (1999). 10.1103/PhysRevB.60.11163 CrossrefGoogle Scholar
  • 17 M. Okamoto and K. Takayanagi, Phys. Rev. B 60, 7808 (1999). 10.1103/PhysRevB.60.7808 CrossrefGoogle Scholar
  • 18 V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000). 10.1103/PhysRevLett.85.4124 CrossrefGoogle Scholar
  • 19 S. R. Bahn, N. Lopez, J. K. Nørskov, and W. Jacobson, Phys. Rev. B 66, 081405 (2002). 10.1103/PhysRevB.66.081405 CrossrefGoogle Scholar
  • 20 H. Mehrez, A. Wlasenko, B. Larade, J. Taylor, P. Grütter, and H. Guo, Phys. Rev. B 65, 195419 (2002). 10.1103/PhysRevB.65.195419 CrossrefGoogle Scholar
  • 21 S. K. Nielsen, M. Brandbyge, K. Hansen, K. Stokbro, J. M. van Ruitenbeek, and F. Besenbacher, Phys. Rev. Lett. 89, 066804 (2002). 10.1103/PhysRevLett.89.066804 CrossrefGoogle Scholar
  • 22 N. Agraït, A. L. Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (2003). 10.1016/S0370-1573(02)00633-6 CrossrefGoogle Scholar
  • 23 A. Fujii, M. Tsutsui, S. Kurokawa, and A. Sakai, Phys. Rev. B 72, 045407 (2005). 10.1103/PhysRevB.72.045407 CrossrefGoogle Scholar
  • 24 D. den Boer, O. I. Shklyarevskii, and S. Speller, Physica B 395, 20 (2007). 10.1016/j.physb.2007.02.016 CrossrefGoogle Scholar
  • 25 D. den Boer, O. I. Shklyarevskii, J. A. A. W. Elemans, and S. Speller, Phys. Rev. B 77, 165423 (2008). 10.1103/PhysRevB.77.165423 CrossrefGoogle Scholar
  • 26 T. Kizuka, Phys. Rev. B 77, 155401 (2008). 10.1103/PhysRevB.77.155401 CrossrefGoogle Scholar
  • 27 C. Q. Sun, Prog. Mater. Sci. 54, 179 (2009). 10.1016/j.pmatsci.2008.08.001 CrossrefGoogle Scholar
  • 28 R. Suzuki, M. Tsutsui, D. Miura, S. Kurokawa, and A. Sakai, Jpn. J. Appl. Phys. 46, 3694 (2007). 10.1143/JJAP.46.3694 CrossrefGoogle Scholar
  • 29 A. Takahashi, S. Kurokawa, and A. Sakai, Phys. Status Solidi A 209, 2151 (2012). 10.1002/pssa.201228190 CrossrefGoogle Scholar
  • 30 J. N. Armstrong, S. Z. Hua, and H. D. Chopra, Phys. Rev. B 83, 235422 (2011). 10.1103/PhysRevB.83.235422 CrossrefGoogle Scholar
  • 31 R. Landauer, IBM J. Res. Dev. 32, 306 (1988). 10.1147/rd.323.0306 CrossrefGoogle Scholar
  • 32 H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. B 103, 8814 (1999). 10.1021/jp992787p CrossrefGoogle Scholar
  • 33 H. Häkkinen, R. N. Barnett, A. G. Scherbakov, and U. Landman, J. Phys. Chem. B 104, 9063 (2000). 10.1021/jp002691r CrossrefGoogle Scholar
  • 34 C. Q. Sun, C. M. Li, S. Li, and B. K. Tay, Phys. Rev. B 69, 245402 (2004). 10.1103/PhysRevB.69.245402 CrossrefGoogle Scholar
  • 35 C. Q. Sun, H. L. Bai, S. Li, B. K. Tay, C. Li, T. P. Chen, and E. Y. Jiang, J. Phys. Chem. B 108, 2162 (2004).10.1021/jp035815j CrossrefGoogle Scholar
  • 36 J. Mizobata, A. Fujii, S. Kurokawa, and A. Sakai, Jpn. J. Appl. Phys. 42, 4680 (2003). 10.1143/JJAP.42.4680 CrossrefGoogle Scholar
  • 37 I. K. Yanson, O. I. Shklyarevskii, J. M. van Ruitenbeek, and S. Speller, Phys. Rev. B 77, 033411 (2008). 10.1103/PhysRevB.77.033411 CrossrefGoogle Scholar
  • 38 T. Minowa, A. Fujii, M. Takeda, S. Kurokawa, and A. Sakai, Appl. Surf. Sci. 241, 14 (2005). 10.1016/j.apsusc.2004.09.010 CrossrefGoogle Scholar
  • 39 T. Kizuka, H. Ohmi, T. Sumi, K. Kumazawa, S. Deguchi, M. Naruse, S. Fujisawa, S. Sasaki, A. Yabe, and Y. Enomoto, Jpn. J. Appl. Phys. 40, L170 (2001). 10.1143/JJAP.40.L170 CrossrefGoogle Scholar
  • 40 M. Ryu and T. Kizuka, Jpn. J. Appl. Phys. 45, 8952 (2006). 10.1143/JJAP.45.8952 CrossrefGoogle Scholar
  • 41 T. Kizuka and K. Monna, Phys. Rev. B 80, 205406 (2009). 10.1103/PhysRevB.80.205406 CrossrefGoogle Scholar
  • 42 H. Masuda, K. Monna, T. Matsuda, and T. Kizuka, e-J. Surf. Sci. Nanotechnol. 7, 549 (2009). 10.1380/ejssnt.2009.549 CrossrefGoogle Scholar
  • 43 H. Masuda and T. Kizuka, Jpn. J. Appl. Phys. 49, 045202 (2010). 10.1143/JJAP.49.045202 CrossrefGoogle Scholar
  • 44 H. Masuda and T. Kizuka, J. Phys. Soc. Jpn. 81, 114707 (2012). 10.1143/JPSJ.81.114707 LinkGoogle Scholar
  • 45 S. Kodama and T. Kizuka, J. Nanosci. Nanotechnol. 12, 1001 (2012). 10.1166/jnn.2012.5878 CrossrefGoogle Scholar
  • 46 T. Kizuka and S. Kodama, J. Phys. Soc. Jpn. 83, 104602 (2014). 10.7566/JPSJ.83.104602 LinkGoogle Scholar
  • 47 T. Ohko and T. Kizuka, J. Nanosci. Nanotechnol. 15, 5484 (2015). 10.1166/jnn.2015.9599 CrossrefGoogle Scholar
  • 48 Supplemental material for the structural deformation process is provided online. Google Scholar
  • 49 T. Kizuka, Phys. Rev. B 57, 11158 (1998). 10.1103/PhysRevB.57.11158 CrossrefGoogle Scholar
  • 50 T. Matsuda and T. Kizuka, Jpn. J. Appl. Phys. 48, 115003 (2009). 10.1143/JJAP.48.115003 CrossrefGoogle Scholar
  • 51 J. Feng and T. Kizuka, J. Nanosci. Nanotechnol. 13, 394 (2013). 10.1166/jnn.2013.6899 CrossrefGoogle Scholar
  • 52 T. Kizuka and S. Ashida, Sci. Rep. 5, 13529 (2015). 10.1038/srep13529 CrossrefGoogle Scholar
  • 53 J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger, Malabar, FL, 1992) 2nd ed. Google Scholar
  • 54 G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longmans, London, 1986). Google Scholar
  • 55 B. Ludoph, N. van der Post, E. N. Bratus’, E. V. Bezuglyi, V. S. Shumeiko, G. Wendin, and J. M. van Ruitenbeek, Phys. Rev. B 61, 8561 (2000). 10.1103/PhysRevB.61.8561 CrossrefGoogle Scholar
  • 56 V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte, Phys. Rev. Lett. 91, 096801 (2003). 10.1103/PhysRevLett.91.096801 CrossrefGoogle Scholar