J. Phys. Soc. Jpn. 86, 034601 (2017) [5 Pages]
FULL PAPERS

Atomistic Structural Dynamics and Current Density Variations during the Transformation from Crystalline to Amorphous States in Tantalum Nanocontacts

+ Affiliations
Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

Pulsed voltages were applied to crystalline tantalum (Ta) nanocontacts (NCs) having a width of approximately 1 nm in a transmission electron microscope and the structural dynamics during their transformation to amorphous states was observed in situ at atomic resolution with simultaneous conductance measurements. Amorphization was caused when a Ta NC was the grain boundary, i.e., the orientations of the two regions adjacent to the contact boundary were different. The amorphous states transformed into crystalline states when the two regions were oriented along the same direction upon the application of the same pulsed voltage. Thus, it was found that the structural transformation of Ta NCs by pulsed voltages depends on the orientational relationship at the contact boundaries. The current density at the minimum cross-sectional area of the amorphized states decreased to 0.71–0.91 relative to that of the crystalline states.

©2017 The Physical Society of Japan

References

  • 1 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988). 10.1103/PhysRevLett.60.848 CrossrefGoogle Scholar
  • 2 D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988). 10.1088/0022-3719/21/8/002 CrossrefGoogle Scholar
  • 3 N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993). 10.1103/PhysRevB.47.12345 CrossrefGoogle Scholar
  • 4 J. I. Pascual, J. Méndez, J. Gómez-Herrero, A. M. Baró, N. García, and V. T. Binh, Phys. Rev. Lett. 71, 1852 (1993). 10.1103/PhysRevLett.71.1852 CrossrefGoogle Scholar
  • 5 M. Brandbyge, J. Schiøtz, M. R. Sørensen, P. Stoltze, K. W. Jacobsen, J. K. Nørskov, L. Olesen, E. Lægsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. B 52, 8499 (1995). 10.1103/PhysRevB.52.8499 CrossrefGoogle Scholar
  • 6 J. L. Costa-Krämer, N. García, P. García-Mochales, and P. A. Serena, Surf. Sci. 342, L1144 (1995). 10.1016/0039-6028(95)00967-1 CrossrefGoogle Scholar
  • 7 J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature 375, 767 (1995). 10.1038/375767a0 CrossrefGoogle Scholar
  • 8 G. Rubio, N. Agraït, and S. Vieira, Phys. Rev. Lett. 76, 2302 (1996). 10.1103/PhysRevLett.76.2302 CrossrefGoogle Scholar
  • 9 C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Phys. Rev. B 53, 16086 (1996). 10.1103/PhysRevB.53.16086 CrossrefGoogle Scholar
  • 10 A. Stalder and U. Dürig, J. Vac. Sci. Technol. B 14, 1259 (1996). 10.1116/1.588527 CrossrefGoogle Scholar
  • 11 J. L. Costa-Krämer, Phys. Rev. B 55, R4875 (1997). 10.1103/PhysRevB.55.R4875 CrossrefGoogle Scholar
  • 12 H. Yasuda and A. Sakai, Phys. Rev. B 56, 1069 (1997). 10.1103/PhysRevB.56.1069 CrossrefGoogle Scholar
  • 13 K. Itakura, K. Yuki, S. Kurokawa, H. Yasuda, and A. Sakai, Phys. Rev. B 60, 11163 (1999). 10.1103/PhysRevB.60.11163 CrossrefGoogle Scholar
  • 14 H. Häkkinen, R. N. Barnett, A. G. Scherbakov, and U. Landman, J. Phys. Chem. B 104, 9063 (2000). 10.1021/jp002691r CrossrefGoogle Scholar
  • 15 B. Ludoph and J. M. van Ruitenbeek, Phys. Rev. B 61, 2273 (2000). 10.1103/PhysRevB.61.2273 CrossrefGoogle Scholar
  • 16 C. Q. Sun, H. L. Bai, S. Li, B. K. Tay, C. Li, T. P. Chen, and E. Y. Jiang, J. Phys. Chem. B 108, 2162 (2004). 10.1021/jp035815j CrossrefGoogle Scholar
  • 17 C. Q. Sun, C. M. Li, S. Li, and B. K. Tay, Phys. Rev. B 69, 245402 (2004). 10.1103/PhysRevB.69.245402 CrossrefGoogle Scholar
  • 18 A. Fujii, M. Tsutsui, S. Kurokawa, and A. Sakai, Phys. Rev. B 72, 045407 (2005). 10.1103/PhysRevB.72.045407 CrossrefGoogle Scholar
  • 19 T. Kizuka, Phys. Rev. B 77, 155401 (2008). 10.1103/PhysRevB.77.155401 CrossrefGoogle Scholar
  • 20 J. M. Krans, C. J. Muller, I. K. Yanson, T. C. M. Govaert, R. Hesper, and J. M. van Ruitenbeek, Phys. Rev. B 48, 14721 (1993). 10.1103/PhysRevB.48.14721 CrossrefGoogle Scholar
  • 21 L. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, J. Schiøtz, P. Stoltze, K. W. Jacobsen, and J. K. Nørskov, Phys. Rev. Lett. 72, 2251 (1994). 10.1103/PhysRevLett.72.2251 CrossrefGoogle Scholar
  • 22 D. den Boer, O. J. Shklyarevskii, and S. Speller, Physica B 395, 20 (2007). 10.1016/j.physb.2007.02.016 CrossrefGoogle Scholar
  • 23 I. K. Yanson, O. I. Shklyarevskii, J. M. van Ruitenbeek, and S. Speller, Phys. Rev. B 77, 033411 (2008). 10.1103/PhysRevB.77.033411 CrossrefGoogle Scholar
  • 24 T. Kizuka and K. Monna, Phys. Rev. B 80, 205406 (2009). 10.1103/PhysRevB.80.205406 CrossrefGoogle Scholar
  • 25 T. N. Todorov and A. P. Sutton, Phys. Rev. Lett. 70, 2138 (1993). 10.1103/PhysRevLett.70.2138 CrossrefGoogle Scholar
  • 26 A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B 52, 5036 (1995). 10.1103/PhysRevB.52.5036 CrossrefGoogle Scholar
  • 27 T. Kizuka, Phys. Rev. B 57, 11158 (1998). 10.1103/PhysRevB.57.11158 CrossrefGoogle Scholar
  • 28 L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S. X. Mao, Nature 512, 177 (2014). 10.1038/nature13617 CrossrefGoogle Scholar
  • 29 T. Kizuka, K. Yamada, S. Deguchi, M. Naruse, and N. Tanaka, Phys. Rev. B 55, R7398 (1997). 10.1103/PhysRevB.55.R7398 CrossrefGoogle Scholar
  • 30 T. Kizuka, H. Ohmi, T. Sumi, K. Kumazawa, S. Deguchi, M. Naruse, S. Fujisawa, S. Sasaki, A. Yabe, and Y. Enomoto, Jpn. J. Appl. Phys. 40, L170 (2001). 10.1143/JJAP.40.L170 CrossrefGoogle Scholar
  • 31 (Supplemental Material) Movie 1 corresponding to Fig. 1 is provided online. Google Scholar
  • 32 S. G. Epstein and A. Paskin, Phys. Lett. A 24, 309 (1967). 10.1016/0375-9601(67)90596-8 CrossrefGoogle Scholar
  • 33 Electromigration and Electronic Device Degradation, ed. A. Christou (Wiley, New York, 1994). Google Scholar
  • 34 K. N. Tu, J. Appl. Phys. 94, 5451 (2003). 10.1063/1.1611263 CrossrefGoogle Scholar
  • 35 C. M. Tan and A. Roy, Mater. Sci. Eng. 58, 1 (2007). 10.1016/j.mser.2007.04.002 CrossrefGoogle Scholar
  • 36 I. Dutta and P. Kumar, Appl. Phys. Lett. 94, 184104 (2009). 10.1063/1.3119219 CrossrefGoogle Scholar
  • 37 P. Kumar, J. Howarth, and I. Dutta, J. Appl. Phys. 115, 044915 (2014). 10.1063/1.4863641 CrossrefGoogle Scholar
  • 38 T. Matsuda and T. Kizuka, Jpn. J. Appl. Phys. 46, 4370 (2007). 10.1143/JJAP.46.4370 CrossrefGoogle Scholar
  • 39 T. Matsuda and T. Kizuka, Jpn. J. Appl. Phys. 48, 115003 (2009). 10.1143/JJAP.48.115003 CrossrefGoogle Scholar
  • 40 (Supplemental Material) Movie 2 (a video of high-resolution images of a Ta NC having a width larger than 10 nm during the application of pulsed voltages) is provided online. Google Scholar
  • 41 (Supplemental Material) Movie 3 corresponding to Fig. 4 is provided online. Google Scholar
  • 42 T. Matsuda, N. Shiotani, and U. Mizutani, J. Phys. F 14, 1193 (1984). 10.1088/0305-4608/14/5/015 CrossrefGoogle Scholar
  • 43 U. Mizutani and K. Yoshino, J. Phys. F 14, 1179 (1984). 10.1088/0305-4608/14/5/014 CrossrefGoogle Scholar
  • 44 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 347 (1911). 10.2307/20022750 CrossrefGoogle Scholar