J. Phys. Soc. Jpn. 86, 064803 (2017) [6 Pages]
FULL PAPERS

Time-of-Flight Elastic and Inelastic Neutron Scattering Studies on the Localized 4d Electron Layered Perovskite La5Mo4O16

+ Affiliations
1Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan2J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan3Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan4Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan5Neutron Science Division, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan6Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051, Japan

The magnetic structure and spin-wave excitations in the quasi-square-lattice layered perovskite compound La5Mo4O16 were studied by a combination of neutron diffraction and inelastic neutron scattering techniques using polycrystalline sample. Neutron powder diffraction refinement revealed that the magnetic structure is ferrimagnetic in the ab plane with antiferromagnetic stacking along the c-axis where the magnetic propagation vector is \(\mathbf{k} = (0,0,1/2)\). The ordered magnetic moments are estimated to be 0.54(2)μB for Mo5+ (4d1) ions and 1.07(3)μB for Mo4+ (4d2) ions at 4 K, which are about half of the expected values. The inelastic neutron scattering results display strong easy-axis magnetic anisotropy along the c-axis due to the spin–orbit interaction in Mo ions evidenced by the spin gap at the magnetic zone center. The model Hamiltonian consisting of in-plane anisotropic exchange interactions, the interlayer exchange interaction, and easy-axis single-ion anisotropy can explain our inelastic neutron scattering data well. Strong Ising-like anisotropy and weak interlayer coupling compared with the intralayer exchange interaction can explain both the high-temperature magnetoresistance and long-time magnetization decay recently observed in La5Mo4O16.

©2017 The Physical Society of Japan

References

  • 1 J. P. Carlo, J. P. Clancy, T. Aharen, Z. Yamani, J. P. C. Ruff, J. J. Wagman, G. J. Van Gastel, H. M. L. Noad, G. E. Granroth, J. E. Greedan, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 84, 100404(R) (2011). 10.1103/PhysRevB.84.100404 CrossrefGoogle Scholar
  • 2 A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Nat. Mater. 15, 733 (2016). 10.1038/nmat4604 CrossrefGoogle Scholar
  • 3 W. H. McCarroll, C. Darling, and G. Jakubicki, J. Solid State Chem. 48, 189 (1983). 10.1016/0022-4596(83)90074-9 CrossrefGoogle Scholar
  • 4 M. Ledesert, Ph. Labbe, W. H. McCarroll, H. Leligny, and B. Raveau, J. Solid State Chem. 105, 143 (1993). 10.1006/jssc.1993.1202 CrossrefGoogle Scholar
  • 5 S. E. Lofland, T. Scabarozi, K. V. Ramanujachary, and W. H. McCarroll, J. Magn. Magn. Mater. 260, 184 (2003). 10.1016/S0304-8853(02)01319-7 CrossrefGoogle Scholar
  • 6 K. V. Ramanujachary, M. Greenblatt, W. H. McCarroll, J. B. Goodenough, H. Leligny, and B. Raveau, Mater. Res. Bull. 28, 1257 (1993). 10.1016/0025-5408(93)90173-B CrossrefGoogle Scholar
  • 7 K. V. Ramanujachary, S. E. Lofland, W. H. McCarroll, T. J. Emge, M. Greenblatt, and M. Croft, J. Solid State Chem. 164, 60 (2002). 10.1006/jssc.2001.9448 CrossrefGoogle Scholar
  • 8 K. Kobayashi and T. Katsufuji, Phys. Rev. B 83, 100411(R) (2011). 10.1103/PhysRevB.83.100411 CrossrefGoogle Scholar
  • 9 T. Konishi, K. Kobayashi, and T. Katsufuji, Phys. Rev. B 92, 020419(R) (2015). 10.1103/PhysRevB.92.020419 CrossrefGoogle Scholar
  • 10 S. Ishiwata, I. Terasaki, F. Ishii, N. Nagaosa, H. Mukuda, Y. Kitaoka, T. Saito, and M. Takano, Phys. Rev. Lett. 98, 217201 (2007). 10.1103/PhysRevLett.98.217201 CrossrefGoogle Scholar
  • 11 A. Hoshikawa, T. Ishigaki, M. Nagai, Y. Kobayashi, H. Sagehashi, T. Kamiyama, M. Yonemura, K. Aizawa, T. Sakuma, Y. Tomota, M. Arai, M. Hayashi, K. Ebata, Y. Takano, and T. Kasao, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 203 (2009). 10.1016/j.nima.2008.11.031 CrossrefGoogle Scholar
  • 12 A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR 86-748 (2000). Google Scholar
  • 13 R. Kajimoto, M. Nakamura, Y. Inamura, F. Mizuno, K. Nakajima, S. Ohira-Kawamura, T. Yokoo, T. Nakatani, R. Maruyama, K. Soyama, K. Shibata, K. Suzuya, S. Sato, K. Aizawa, M. Arai, S. Wakimoto, M. Ishikado, S. Shamoto, M. Fujita, H. Hiraka, K. Ohoyama, K. Yamada, and C.-H. Lee, J. Phys. Soc. Jpn. 80, SB025 (2011). 10.1143/JPSJS.80SB.SB025 LinkGoogle Scholar
  • 14 M. Nakamura, R. Kajimoto, Y. Inamura, F. Mizuno, M. Fujita, T. Yokoo, and M. Arai, J. Phys. Soc. Jpn. 78, 093002 (2009). 10.1143/JPSJ.78.093002 LinkGoogle Scholar
  • 15 S. Itoh, T. Yokoo, S. Satoh, S. Yano, D. Kawana, J. Suzuki, and T. J. Sato, Nucl. Instrum. Methods Phys. Res., Sect. A 631, 90 (2011). 10.1016/j.nima.2010.11.107 CrossrefGoogle Scholar
  • 16 S. Itoh, Y. Endoh, T. Yokoo, D. Kawana, Y. Kaneko, Y. Tokura, and M. Fujita, J. Phys. Soc. Jpn. 82, 043001 (2013). 10.7566/JPSJ.82.043001 LinkGoogle Scholar
  • 17 Y. Inamura, T. Nakatani, J. Suzuki, and T. Otomo, J. Phys. Soc. Jpn. 82, SA031 (2013). 10.7566/JPSJS.82SA.SA031 LinkGoogle Scholar
  • 18 K. Iida, K. Ikeuchi, M. Ishikado, J. Suzuki, R. Kajimoto, M. Nakamura, Y. Inamura, and M. Arai, JPS Conf. Proc. 1, 014016 (2014). 10.7566/JPSCP.1.014016 LinkGoogle Scholar
  • 19 R. Kajimoto, M. Nakamura, Y. Inamura, K. Kamazawa, K. Ikeuchi, K. Iida, M. Ishikado, K. Nakajima, M. Harada, and M. Arai, JPS Conf. Proc. 8, 036001 (2015). 10.7566/JPSCP.8.036001 LinkGoogle Scholar
  • 20 P. J. Brown, International Tables for Crystallography (Springer, Dordrecht, 2002) Vol. C, Chap. 4.4. Google Scholar
  • 21 W. Liu and H. H. Thorp, Inorg. Chem. 32, 4102 (1993). 10.1021/ic00071a023 CrossrefGoogle Scholar
  • 22 J. Rodríguez-Carvajal, Physica B 192, 55 (1993). 10.1016/0921-4526(93)90108-I CrossrefGoogle Scholar
  • 23 F. Ramezanipour, S. Derakhshan, J. E. Greedan, and L. M. D. Cranswick, J. Solid State Chem. 181, 3366 (2008). 10.1016/j.jssc.2008.09.012 CrossrefGoogle Scholar
  • 24 L. Chi, I. P. Swainson, and J. E. Greedan, J. Solid State Chem. 177, 3086 (2004). 10.1016/j.jssc.2004.05.014 CrossrefGoogle Scholar
  • 25 H. L. Cuthbert, J. E. Greedan, and L. Cranswick, J. Solid State Chem. 179, 1938 (2006). 10.1016/j.jssc.2006.03.043 CrossrefGoogle Scholar
  • 26 S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff, II, and S.-W. Cheong, Phys. Rev. Lett. 84, 3718 (2000). 10.1103/PhysRevLett.84.3718 CrossrefGoogle Scholar
  • 27 R. M. White, M. Sparks, and I. Ortenburger, Phys. Rev. 139, A450 (1965). 10.1103/PhysRev.139.A450 CrossrefGoogle Scholar
  • 28 S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Oxford University Press, Oxford, U.K., 1984) Vol. 2, Chap. 9.6. Google Scholar
  • 29 S. Toth and B. Lake, J. Phys.: Condens. Matter 27, 166002 (2015). 10.1088/0953-8984/27/16/166002 CrossrefGoogle Scholar
  • 30 A. Jain, P. Y. Portnichenko, H. Jang, G. Jackeli, G. Friemel, A. Ivanov, A. Piovano, S. M. Yusuf, B. Keimer, and D. S. Inosov, Phys. Rev. B 88, 224403 (2013). 10.1103/PhysRevB.88.224403 CrossrefGoogle Scholar
  • 31 J. P. Carlo, J. P. Clancy, K. Fritsch, C. A. Marjerrison, G. E. Granroth, J. E. Greedan, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 88, 024418 (2013). 10.1103/PhysRevB.88.024418 CrossrefGoogle Scholar
  • 32 A. A. Aczel, P. J. Baker, D. E. Bugaris, J. Yeon, H.-C. zur Loye, T. Guidi, and D. T. Adroja, Phys. Rev. Lett. 112, 117603 (2014). 10.1103/PhysRevLett.112.117603 CrossrefGoogle Scholar
  • 33 S. Kunkemöller, D. Khomskii, P. Steffens, A. Piovano, A. A. Nugroho, and M. Braden, Phys. Rev. Lett. 115, 247201 (2015). 10.1103/PhysRevLett.115.247201 CrossrefGoogle Scholar