J. Phys. Soc. Jpn. 86, 093706 (2017) [4 Pages]
LETTERS

Lattice and Magnetic Effects on a dd Excitation in NiO Using a 25 meV Resolution X-ray Spectrometer

+ Affiliations
1Materials Dynamics Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 6791-5148, Japan2Research and Utilization Division, SPring-8/JASRI, Sayo, Hyogo 679-5198, Japan3Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany

We investigate the behavior of a dd transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ∼1.7 eV energy transfer is measured at temperatures between 20 and 800 K, at a momentum transfer |Q| = 6.52 Å−1. Fine structure is clearly observed at 20 K. As temperature is increased, the excitation shifts to lower energy and broadens. We explain the energy shift as being related to thermal expansion and to magnetism. The broadening is well fit considering thermal fluctuations of the Ni–O bond length, with a scale factor found to be in reasonable agreement with calculation.

©2017 The Physical Society of Japan

References

  • 1 W. Schülke, Electron Dynamics by Inelastic X-ray Scattering (Oxford University Press, New York, 2007). Google Scholar
  • 2 A. Q. R. Baron, in Synchrotron Light Sources Free. Lasers Accel. Physics, Instrum. Sci. Applications, ed. E. Jaeschke et al. (Springer International Publishing, Cham, 2016) pp. 1643–1757. See also arXiv:1504.01098. Google Scholar
  •   (3) For example, measurement of the same transition as discussed here, but with a high (7 meV) resolution spectrometer required several days to see a signal, and, even then, suffered from poor statistical quality.2) Google Scholar
  • 4 B. C. Larson, W. Ku, J. Z. Tischler, C.-C. Lee, O. D. Restrepo, A. G. Eguiluz, P. Zschack, and K. D. Finkelstein, Phys. Rev. Lett. 99, 026401 (2007). 10.1103/PhysRevLett.99.026401 CrossrefGoogle Scholar
  • 5 L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011). 10.1103/RevModPhys.83.705 CrossrefGoogle Scholar
  • 6 K. Ishii, T. Tohyama, and J. Mizuki, J. Phys. Soc. Jpn. 82, 021015 (2013). 10.7566/JPSJ.82.021015 LinkGoogle Scholar
  • 7 S. Huotari, G. Vanko, F. Albergamo, C. Ponchut, H. Graafsma, C. Henriquet, R. Verbeni, and G. Monaco, J. Synchrotron Radiat. 12, 467 (2005). 10.1107/S0909049505010630 CrossrefGoogle Scholar
  • 8 R. Verbeni, T. Pylkkänen, S. Huotari, L. Simonelli, G. Vankó, K. Martel, C. Henriquet, and G. Monaco, J. Synchrotron Radiat. 16, 469 (2009). 10.1107/S090904950901886X CrossrefGoogle Scholar
  • 9 S. Huotari, L. Simonelli, C. J. Sahle, M. M. Sala, R. Verbeni, and G. Monaco, J. Phys.: Condens. Matter 26, 165501 (2014). 10.1088/0953-8984/26/16/165501 CrossrefGoogle Scholar
  • 10 D. Ishikawa and A. Q. R. Baron, J. Synchrotron Radiat. 17, 12 (2010). 10.1107/S0909049509043167 CrossrefGoogle Scholar
  • 11 A. Q. R. Baron, SPring-8 Inf., Newsl. 15, 14 (2010). Google Scholar
  • 12 T. Ishikawa, Y. Yoda, K. Izumi, C. K. Suzuki, X. W. Zhang, M. Ando, and S. Kikuta, Rev. Sci. Instrum. 63, 1015 (1992). 10.1063/1.1143188 CrossrefGoogle Scholar
  • 13 C. Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco, F. Sette, and R. Verbeni, Nucl. Instrum. Methods Phys. Res., Sect. B 111, 181 (1996). 10.1016/0168-583X(95)01288-5 CrossrefGoogle Scholar
  • 14 D. Ishikawa, A. Q. R. Baron et al., Unpublished. Google Scholar
  • 15 M. W. Haverkort, A. Tanaka, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. Lett. 99, 257401 (2007). 10.1103/PhysRevLett.99.257401 CrossrefGoogle Scholar
  • 16 N. Hiraoka, M. Suzuki, K. D. Tsuei, H. Ishii, Y. Q. Cai, M. W. Haverkort, C. C. Lee, and W. Ku, Europhys. Lett. 96, 37007 (2011). 10.1209/0295-5075/96/37007 CrossrefGoogle Scholar
  •   (17) The energy plotted in Fig. 4(a) is the average of the center-of-mass, the center of the FWHM and the center of the Gaussian fit. The error bar is the maximum difference between these. Google Scholar
  • 18 W. L. Roth, Phys. Rev. 110, 1333 (1958). 10.1103/PhysRev.110.1333 CrossrefGoogle Scholar
  • 19 W. L. Roth, Phys. Rev. 111, 772 (1958). 10.1103/PhysRev.111.772 CrossrefGoogle Scholar
  • 20 G. A. Slack, J. Appl. Phys. 31, 1571 (1960). 10.1063/1.1735895 CrossrefGoogle Scholar
  • 21 A. Domingo, A. Rodríguez-Fortea, M. Swart, C. de Graaf, and R. Broer, Phys. Rev. B 85, 155143 (2012). 10.1103/PhysRevB.85.155143 CrossrefGoogle Scholar
  • 22 M. W. Haverkort, M. Zwierzycki, and O. K. Andersen, Phys. Rev. B 85, 165113 (2012). 10.1103/PhysRevB.85.165113 CrossrefGoogle Scholar
  • 23 K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). 10.1103/PhysRevB.59.1743 CrossrefGoogle Scholar
  • 24 L. C. Bartel and B. Morosin, Phys. Rev. B 3, 1039 (1971). 10.1103/PhysRevB.3.1039 CrossrefGoogle Scholar
  • 25 S. P. Srivastava, R. C. Srivastava, I. D. Singh, S. D. Pandey, and P. L. Gupta, J. Phys. Soc. Jpn. 43, 885 (1977). 10.1143/JPSJ.43.885 LinkGoogle Scholar
  • 26 R. A. Coy, C. W. Tompson, and E. Gürmen, Solid State Commun. 18, 845 (1976). 10.1016/0038-1098(76)90220-9 CrossrefGoogle Scholar
  • 27 G. Eckold, M. Stein-Arsic, and H. J. Weber, J. Appl. Crystallogr. 20, 134 (1987). 10.1107/S0021889887086977 CrossrefGoogle Scholar
  • 28 G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover, New York, 1978). Google Scholar
  •   (29) The momentum resolution was not precisely given in Ref. 9: the factor of 6 comes from scaling by the number of analyzers (they used 6, the present work 1) and assuming that their shorter (1 m) arm balances their operation at half the energy of the work here. Google Scholar
  • 30 R. Newman and R. M. Chrenko, Phys. Rev. 114, 1507 (1959). 10.1103/PhysRev.114.1507 CrossrefGoogle Scholar