- Full text:
- PDF (eReader) / PDF (Download) (605 kB)
We develop a physical model to describe the signal transmission for a continuous-variable quantum key distribution scheme and investigate its security against a couple of eavesdropping attacks assuming that the eavesdropper’s power is partly restricted owing to today’s technological limitations. We consider an eavesdropper performing quantum optical homodyne measurement on the signal obtained by a type of beamsplitting attack. We also consider the case in which the eavesdropper Eve is unable to access a quantum memory and she performs heterodyne measurement on her signal without performing a delayed measurement. Our formulation includes a model in which the receiver’s loss and noise are unaccessible by the eavesdropper. This setup enables us to investigate the condition that Eve uses a practical fiber differently from the usual beamsplitting attack where she can deploy a lossless transmission channel. The secret key rates are calculated in both the direct and reverse reconciliation scenarios.
References
- 1 V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009). 10.1103/RevModPhys.81.1301 Crossref, Google Scholar
- 2 H.-K. Lo, M. Curty, and K. Tamaki, Nat. Photonics 8, 595 (2014). 10.1038/nphoton.2014.149 Crossref, Google Scholar
- 3 E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, npj Quantum Information 2, 16025 (2016). 10.1038/npjqi.2016.25 Crossref, Google Scholar
- 4 M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, Opt. Express 19, 10387 (2011). 10.1364/OE.19.010387 Crossref, Google Scholar
- 5 D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, New J. Phys. 13, 123001 (2011). 10.1088/1367-2630/13/12/123001 Crossref, Google Scholar
- 6 C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, Phys. Rev. Lett. 89, 167901 (2002). 10.1103/PhysRevLett.89.167901 Crossref, Google Scholar
- 7 S. Lorenz, N. Korolkova, and G. Leuchs, Appl. Phys. B 79, 273 (2004). 10.1007/s00340-004-1574-7 Crossref, Google Scholar
- 8 T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, Phys. Rev. A 68, 042331 (2003). 10.1103/PhysRevA.68.042331 Crossref, Google Scholar
- 9 C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, Phys. Rev. Lett. 93, 170504 (2004). 10.1103/PhysRevLett.93.170504 Crossref, Google Scholar
- 10 F. Grosshans, G. Van Assche, J. Wenger, R. Tualle-Brouri, N. Cerf, and P. Grangier, Nature 421, 238 (2003). 10.1038/nature01289 Crossref, Google Scholar
- 11 D. Sych and G. Leuchs, New J. Phys. 12, 053019 (2010). 10.1088/1367-2630/12/5/053019 Crossref, Google Scholar
- 12 R. Namiki and T. Hirano, Phys. Rev. A 74, 032302 (2006). 10.1103/PhysRevA.74.032302 Crossref, Google Scholar
- 13 S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, New J. Phys. 11, 045023 (2009). 10.1088/1367-2630/11/4/045023 Crossref, Google Scholar
- 14 P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, Opt. Express 20, 14030 (2012). 10.1364/OE.20.014030 Crossref, Google Scholar
- 15 P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Nat. Photonics 7, 378 (2013). 10.1038/nphoton.2013.63 Crossref, Google Scholar
- 16 D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Opt. Lett. 41, 3511 (2016). 10.1364/OL.41.003511 Crossref, Google Scholar
- 17 M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, Opt. Express 22, 4098 (2014). 10.1364/OE.22.004098 Crossref, Google Scholar
- 18 M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, Opt. Express 24, 652 (2016). 10.1364/OE.24.000652 Crossref, Google Scholar
- 19 M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, IEEE J. Quantum Electron. 53, 1 (2017).10.1109/JQE.2017.2708523 Crossref, Google Scholar
- 20 W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003). 10.1103/PhysRevLett.91.057901 Crossref, Google Scholar
- 21 X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005). 10.1103/PhysRevLett.94.230503 Crossref, Google Scholar
- 22 K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. A 68, 022317 (2003). 10.1103/PhysRevA.68.022317 Crossref, Google Scholar
- 23 H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005). 10.1103/PhysRevLett.94.230504 Crossref, Google Scholar
- 24 T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014). 10.1038/nature13303 Crossref, Google Scholar
- 25 R. Namiki and T. Hirano, Phys. Rev. Lett. 92, 117901 (2004). 10.1103/PhysRevLett.92.117901 Crossref, Google Scholar
- 26 R. Namiki and T. Hirano, Phys. Rev. A 72, 024301 (2005). 10.1103/PhysRevA.72.024301 Crossref, Google Scholar
- 27 C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012). 10.1103/RevModPhys.84.621 Crossref, Google Scholar
- 28 S. Olivares, Eur. Phys. J.: Spec. Top. 203, 3 (2012). 10.1140/epjst/e2012-01532-4 Crossref, Google Scholar
- 29 R. Namiki, O. Gittsovich, S. Guha, and N. Lütkenhaus, Phys. Rev. A 90, 062316 (2014). 10.1103/PhysRevA.90.062316 Crossref, Google Scholar
- 30 R. König, U. Maurer, and R. Renner, IEEE Trans. Inf. Theory 51, 2391 (2005). 10.1109/TIT.2005.850087 Crossref, Google Scholar
- 31 U. Leonhardt, in Measuring the Quantum State of Light, ed. P. L. Knight and A. Miller (Cambridge University Press, Cambridge, U.K., 1997) Chap. 6. Google Scholar
- 32 M. Heid and N. Lütkenhaus, Phys. Rev. A 76, 022313 (2007). 10.1103/PhysRevA.76.022313 Crossref, Google Scholar
- 33 Y.-B. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, Phys. Rev. A 79, 012307 (2009). 10.1103/PhysRevA.79.012307 Crossref, Google Scholar
- 34 H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, and S. Tanaka, J. Lightwave Technol. 4, 1144 (1986). 10.1109/JLT.1986.1074837 Crossref, Google Scholar
- 35 K. Nagayama, M. Kakui, M. Matsui, I. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002). 10.1049/el:20020824 Crossref, Google Scholar
- 36 T. Ichikawa and T. Hirano, presented at Qcrypt, 2014. Google ScholarT. Ichikawa and T. Hirano, presented at Qcrypt, 2014. Google Scholar
- 37 T. Hirano, T. Ichikawa, T. Matsubara, M. Ono, Y. Oguri, R. Namiki, K. Kasai, R. Matsumoto, and T. Tsurumaru, Quantum Sci. Technol. 2, 024010 (2017). 10.1088/2058-9565/aa7230 Crossref, Google Scholar
- 38 R. Namiki, M. Koashi, and N. Imoto, Phys. Rev. A 73, 032302 (2006). 10.1103/PhysRevA.73.032302 Crossref, Google Scholar