- Full text:
- PDF (eReader) / PDF (Download) (1146 kB)
Chiral magnets are magnetically ordered insulators having spin scalar chirality, and magnons of chiral magnets have been poorly understood. We study the magnon dispersion and specific heat for four chiral magnets with Q = 0 on the pyrochlore lattice. This study is based on the linear-spin-wave approximation for the S = 1/2 effective Hamiltonian consisting of two kinds of Heisenberg interaction and two kinds of Dzyaloshinsky–Moriya interaction. We show that the three-in-one-out type chiral magnets possess an optical branch of the magnon dispersion near q = 0, in addition to three quasiacoustic branches. This differs from the all-in/all-out type chiral magnets, which possess four quasiacoustic branches. We also show that all four chiral magnets have a gapped magnon energy at q = 0, indicating the absence of the Goldstone type gapless excitation. These results are useful for experimentally identifying the three-in-one-out or all-in/all-out type chiral order. Then, we show that there is no qualitative difference in the specific heat among the four magnets. This indicates that the specific heat is not useful for distinguishing the kinds of chiral orders. We finally compare our results with experiments and provide a proposal for the three-in-one-out type chiral magnets.
References
- 1 F. Bloch, Z. Phys. 61, 206 (1930). 10.1007/BF01339661 Crossref, Google Scholar
- 2 J. C. Slater, Phys. Rev. 35, 509 (1930). 10.1103/PhysRev.35.509 Crossref, Google Scholar
- 3 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 10.1103/PhysRev.58.1098 Crossref, Google Scholar
- 4 F. Dyson, Phys. Rev. 102, 1217 (1956). 10.1103/PhysRev.102.1217 Crossref, Google Scholar
- 5 F. Dyson, Phys. Rev. 102, 1230 (1956). 10.1103/PhysRev.102.1230 Crossref, Google Scholar
- 6 K. Yosida, Theory of Magnetism (Springer, New York, 1996). Crossref, Google Scholar
- 7 J. Kanamori, Magnetism (Shokabo, Tokyo, 1969). Google Scholar
- 8 J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010). 10.1103/RevModPhys.82.53 Crossref, Google Scholar
- 9 C. Donnerer, M. C. Rahn, M. M. Sala, J. G. Vale, D. Pincini, J. Strempfer, M. Krisch, D. Prabhakaran, A. T. Boothroyd, and D. F. McMorrow, Phys. Rev. Lett. 117, 037201 (2016). 10.1103/PhysRevLett.117.037201 Crossref, Google Scholar
- 10 C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008). 10.1038/nature06433 Crossref, Google Scholar
- 11 A. G. Del Maestro and M. J. P. Gingras, J. Phys.: Condens. Matter 16, 3339 (2004). 10.1088/0953-8984/16/20/005 Crossref, Google Scholar
- 12 S. Toth and B. Lake, J. Phys.: Condens. Matter 27, 166002 (2015). 10.1088/0953-8984/27/16/166002 Crossref, Google Scholar
- 13 N. Arakawa, Phys. Rev. B 94, 155139 (2016). 10.1103/PhysRevB.94.155139 Crossref, Google Scholar
- 14 T. Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91 Crossref, Google Scholar
- 15 M. Elhajal, B. Canals, R. Sunyer, and C. Lacroix, Phys. Rev. B 71, 094420 (2005). 10.1103/PhysRevB.71.094420 Crossref, Google Scholar
- 16 J. Colpa, Physica A 93, 327 (1978). 10.1016/0378-4371(78)90160-7 Crossref, Google Scholar
- 17 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, New York, 1976). Google Scholar
- 18 A. W. Sandvik, Phys. Rev. B 56, 11678 (1997), and references therein. 10.1103/PhysRevB.56.11678 Crossref, Google Scholar
- 19 M. E. Zhitomirsky and A. L. Chernyshev, Rev. Mod. Phys. 85, 219 (2013). 10.1103/RevModPhys.85.219 Crossref, Google Scholar
- 20 K. Matsuhira, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Jpn. 80, 094701 (2011). 10.1143/JPSJ.80.094701 Link, Google Scholar
- 21 A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999). 10.1038/20619 Crossref, Google Scholar
- 22 D. J. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Science 326, 411 (2009). 10.1126/science.1178868 Crossref, Google Scholar