J. Phys. Soc. Jpn. 86, 101008 (2017) [11 Pages]
SPECIAL TOPICS: Recent Progress in Active Matter

Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

+ Affiliations
1Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan2Mathematics for Advanced Materials Open Innovation Laboratory (MathAM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) and Tohoku University, Sendai 980-8577, Japan3Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle–particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that we have developed, allow us to better understand the complex hydrodynamic interactions in microswimmer dispersions.

©2017 The Physical Society of Japan

References

  • 1 K. Y. Wan and R. E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 113, E2784 (2016). 10.1073/pnas.1518527113 CrossrefGoogle Scholar
  • 2 P. Kanehl and T. Ishikawa, Phys. Rev. E 89, 042704 (2014). 10.1103/PhysRevE.89.042704 CrossrefGoogle Scholar
  • 3 K. Ishimoto, J. Theor. Biol. 399, 166 (2016). 10.1016/j.jtbi.2016.03.041 CrossrefGoogle Scholar
  • 4 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995). 10.1103/PhysRevLett.75.1226 CrossrefGoogle Scholar
  • 5 G. Grégoire and H. Chaté, Phys. Rev. Lett. 92, 025702 (2004). 10.1103/PhysRevLett.92.025702 CrossrefGoogle Scholar
  • 6 H. Chaté, F. Ginelli, and R. Montagne, Phys. Rev. Lett. 96, 180602 (2006). 10.1103/PhysRevLett.96.180602 CrossrefGoogle Scholar
  • 7 H. Chaté, F. Ginelli, and F. Raynaud, Phys. Rev. E 77, 046113 (2008). 10.1103/PhysRevE.77.046113 CrossrefGoogle Scholar
  • 8 J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007). 10.1103/PhysRevLett.99.048102 CrossrefGoogle Scholar
  • 9 W. Yan and J. F. Brady, J. Chem. Phys. 145, 134902 (2016). 10.1063/1.4963722 CrossrefGoogle Scholar
  • 10 M. Rein and T. Speck, Eur. Phys. J. E 39, 84 (2016). 10.1140/epje/i2016-16084-7 CrossrefGoogle Scholar
  • 11 H. C. Berg and L. Turner, Nature 278, 349 (1979). 10.1038/278349a0 CrossrefGoogle Scholar
  • 12 A. Costanzo, J. Elgeti, T. Auth, G. Gompper, and M. Ripoll, Europhys. Lett. 107, 36003 (2014). 10.1209/0295-5075/107/36003 CrossrefGoogle Scholar
  • 13 R. Soto and R. Golestanian, Phys. Rev. E 89, 012706 (2014). 10.1103/PhysRevE.89.012706 CrossrefGoogle Scholar
  • 14 M. Paoluzzi, R. Di Leonardo, and L. Angelani, Phys. Rev. Lett. 115, 188303 (2015). 10.1103/PhysRevLett.115.188303 CrossrefGoogle Scholar
  • 15 J. Stenhammar, D. Marenduzzo, R. J. Allen, and M. E. Cates, Soft Matter 10, 1489 (2014). 10.1039/C3SM52813H CrossrefGoogle Scholar
  • 16 S. C. Takatori and J. F. Brady, Soft Matter 10, 9433 (2014). 10.1039/C4SM01409J CrossrefGoogle Scholar
  • 17 S. C. Takatori, W. Yan, and J. F. Brady, Phys. Rev. Lett. 113, 028103 (2014). 10.1103/PhysRevLett.113.028103 CrossrefGoogle Scholar
  • 18 S. C. Takatori and J. F. Brady, Phys. Rev. E 91, 032117 (2015). 10.1103/PhysRevE.91.032117 CrossrefGoogle Scholar
  • 19 A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur, Nat. Phys. 11, 673 (2015). 10.1038/nphys3377 CrossrefGoogle Scholar
  • 20 A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates, and J. Tailleur, Phys. Rev. Lett. 114, 198301 (2015). 10.1103/PhysRevLett.114.198301 CrossrefGoogle Scholar
  • 21 J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett. 115, 098301 (2015). 10.1103/PhysRevLett.115.098301 CrossrefGoogle Scholar
  • 22 É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. van Wijland, Phys. Rev. Lett. 117, 038103 (2016). 10.1103/PhysRevLett.117.038103 CrossrefGoogle Scholar
  • 23 N. Nikola, A. P. Solon, Y. Kafri, M. Kardar, J. Tailleur, and R. Voituriez, Phys. Rev. Lett. 117, 098001 (2016). 10.1103/PhysRevLett.117.098001 CrossrefGoogle Scholar
  • 24 T. Speck and R. L. Jack, Phys. Rev. E 93, 062605 (2016). 10.1103/PhysRevE.93.062605 CrossrefGoogle Scholar
  • 25 T. Speck, Europhys. Lett. 114, 30006 (2016). 10.1209/0295-5075/114/30006 CrossrefGoogle Scholar
  • 26 L. Angelani, R. Di Leonardo, and G. Ruocco, Phys. Rev. Lett. 102, 048104 (2009). 10.1103/PhysRevLett.102.048104 CrossrefGoogle Scholar
  • 27 R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Angelis, and E. Di Fabrizio, Proc. Natl. Acad. Sci. U.S.A. 107, 9541 (2010). 10.1073/pnas.0910426107 CrossrefGoogle Scholar
  • 28 A. Kaiser, H. H. Wensink, and H. Löwen, Phys. Rev. Lett. 108, 268307 (2012). 10.1103/PhysRevLett.108.268307 CrossrefGoogle Scholar
  • 29 E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014). 10.1073/pnas.1405698111 CrossrefGoogle Scholar
  • 30 A. Kaiser, A. Peshkov, A. Sokolov, B. ten Hagen, H. Löwen, and I. S. Aranson, Phys. Rev. Lett. 112, 158101 (2014). 10.1103/PhysRevLett.112.158101 CrossrefGoogle Scholar
  • 31 K. Kyoya, D. Matsunaga, Y. Imai, T. Omori, and T. Ishikawa, Phys. Rev. E 92, 063027 (2015). 10.1103/PhysRevE.92.063027 CrossrefGoogle Scholar
  • 32 R. Aditi Simha and S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002). 10.1103/PhysRevLett.89.058101 CrossrefGoogle Scholar
  • 33 D. Saintillan and M. Shelley, Phys. Rev. Lett. 100, 178103 (2008). 10.1103/PhysRevLett.100.178103 CrossrefGoogle Scholar
  • 34 B. Ezhilan, M. J. Shelley, and D. Saintillan, Phys. Fluids 25, 070607 (2013). 10.1063/1.4812822 CrossrefGoogle Scholar
  • 35 M. J. Lighthill, Annu. Rev. Fluid Mech. 1, 413 (1969). 10.1146/annurev.fl.01.010169.002213 CrossrefGoogle Scholar
  • 36 J. R. Blake, J. Fluid Mech. 46, 199 (1971). 10.1017/S002211207100048X CrossrefGoogle Scholar
  • 37 T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 437 (2007). 10.1017/S0022112007007847 CrossrefGoogle Scholar
  • 38 O. S. Pak and E. Lauga, J. Eng. Math. 88, 1 (2014). 10.1007/s10665-014-9690-9 CrossrefGoogle Scholar
  • 39 T. Ishikawa and M. Hota, J. Exp. Biol. 209, 4452 (2006). 10.1242/jeb.02537 CrossrefGoogle Scholar
  • 40 T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 399 (2007). 10.1017/S0022112007007835 CrossrefGoogle Scholar
  • 41 T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103 (2008). 10.1103/PhysRevLett.100.088103 CrossrefGoogle Scholar
  • 42 M. T. Downton and H. Stark, J. Phys.: Condens. Matter 21, 204101 (2009). 10.1088/0953-8984/21/20/204101 CrossrefGoogle Scholar
  • 43 D. Giacché and T. Ishikawa, J. Theor. Biol. 267, 252 (2010). 10.1016/j.jtbi.2010.08.003 CrossrefGoogle Scholar
  • 44 I. Llopis and I. Pagonabarraga, J. Non-Newtonian Fluid Mech. 165, 946 (2010). 10.1016/j.jnnfm.2010.01.023 CrossrefGoogle Scholar
  • 45 I. Götze and G. Gompper, Phys. Rev. E 82, 041921 (2010). 10.1103/PhysRevE.82.041921 CrossrefGoogle Scholar
  • 46 G.-J. Li and A. M. Ardekani, Phys. Rev. E 90, 013010 (2014). 10.1103/PhysRevE.90.013010 CrossrefGoogle Scholar
  • 47 L. Zhu, E. Lauga, and L. Brandt, J. Fluid Mech. 726, 285 (2013). 10.1017/jfm.2013.225 CrossrefGoogle Scholar
  • 48 J. J. Molina, Y. Nakayama, and R. Yamamoto, Soft Matter 9, 4923 (2013). 10.1039/c3sm00140g CrossrefGoogle Scholar
  • 49 Z. Lin, J.-L. Thiffeault, and S. Childress, J. Fluid Mech. 669, 167 (2011). 10.1017/S002211201000563X CrossrefGoogle Scholar
  • 50 F. Alarcón and I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013). 10.1016/j.molliq.2012.12.009 CrossrefGoogle Scholar
  • 51 J. S. Lintuvuori, A. T. Brown, K. Stratford, and D. Marenduzzo, Soft Matter 12, 7959 (2016). 10.1039/C6SM01353H CrossrefGoogle Scholar
  • 52 A. S. Khair and N. G. Chisholm, Phys. Fluids 26, 011902 (2014). 10.1063/1.4859375 CrossrefGoogle Scholar
  • 53 M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, Soft Matter 12, 7372 (2016). 10.1039/C6SM01424K CrossrefGoogle Scholar
  • 54 K. Ishimoto and E. A. Gaffney, Phys. Rev. E 88, 062702 (2013). 10.1103/PhysRevE.88.062702 CrossrefGoogle Scholar
  • 55 J. J. Molina and R. Yamamoto, Mol. Phys. 112, 1389 (2014). 10.1080/00268976.2014.903004 CrossrefGoogle Scholar
  • 56 T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid Mech. 568, 119 (2006). 10.1017/S0022112006002631 CrossrefGoogle Scholar
  • 57 J. V. José and E. J. Saletan, Classical Dynamics: A Contemporary Approach (Cambridge University Press, New York, 1998) 1st ed. CrossrefGoogle Scholar
  • 58 G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, New York, 1967) 1st ed. Google Scholar
  • 59 Y. Nakayama and R. Yamamoto, Phys. Rev. E 71, 036707 (2005). 10.1103/PhysRevE.71.036707 CrossrefGoogle Scholar
  • 60 K. Kim, Y. Nakayama, and R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006). 10.1103/PhysRevLett.96.208302 CrossrefGoogle Scholar
  • 61 Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E 26, 361 (2008). 10.1140/epje/i2007-10332-y CrossrefGoogle Scholar
  • 62 S. Ramachandran, P. B. S. Kumar, and I. Pagonabarraga, Eur. Phys. J. E 20, 151 (2006). 10.1140/epje/i2006-10009-1 CrossrefGoogle Scholar
  • 63 T. Ishikawa, J. T. Locsei, and T. Pedley, Phys. Rev. E 82, 021408 (2010). 10.1103/PhysRevE.82.021408 CrossrefGoogle Scholar
  • 64 L. Zhu, E. Lauga, and L. Brandt, Phys. Fluids 24, 051902 (2012). 10.1063/1.4718446 CrossrefGoogle Scholar
  • 65 A. Hamid, J. J. Molina, and R. Yamamoto, Soft Matter 9, 10056 (2013). 10.1039/c3sm50748c CrossrefGoogle Scholar
  • 66 C. Shih and R. Yamamoto, Phys. Rev. E 89, 062317 (2014). 10.1103/PhysRevE.89.062317 CrossrefGoogle Scholar
  • 67 T. Iwashita and R. Yamamoto, Phys. Rev. E 80, 061402 (2009). 10.1103/PhysRevE.80.061402 CrossrefGoogle Scholar
  • 68 J. J. Molina and R. Yamamoto, J. Chem. Phys. 139, 234105 (2013). 10.1063/1.4844115 CrossrefGoogle Scholar
  • 69 R. Tatsumi and R. Yamamoto, Phys. Rev. E 85, 066704 (2012). 10.1103/PhysRevE.85.066704 CrossrefGoogle Scholar
  • 70 R. Tatsumi and R. Yamamoto, Phys. Fluids 25, 046101 (2013). 10.1063/1.4802038 CrossrefGoogle Scholar
  • 71 X. Luo, M. R. Maxey, and G. E. Karniadakis, J. Comput. Phys. 228, 1750 (2009). 10.1016/j.jcp.2008.11.006 CrossrefGoogle Scholar
  • 72 X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000). 10.1103/PhysRevLett.84.3017 CrossrefGoogle Scholar
  • 73 M. J. Kim and K. S. Breuer, Phys. Fluids 16, L78 (2004). 10.1063/1.1787527 CrossrefGoogle Scholar
  • 74 K. C. Leptos, J. S. Guasto, J. Gollub, A. Pesci, and R. Goldstein, Phys. Rev. Lett. 103, 198103 (2009). 10.1103/PhysRevLett.103.198103 CrossrefGoogle Scholar
  • 75 G. L. Miño, J. Dunstan, A. Rousselet, E. Clement, and R. Soto, J. Fluid Mech. 729, 423 (2013). 10.1017/jfm.2013.304 CrossrefGoogle Scholar
  • 76 A. Jepson, V. A. Martinez, J. Schwarz-Linek, A. Morozov, and W. C. K. Poon, Phys. Rev. E 88, 041002 (2013). 10.1103/PhysRevE.88.041002 CrossrefGoogle Scholar
  • 77 N. Oyama, J. J. Molina, and R. Yamamoto, arXiv:1606.03839. Google Scholar
  • 78 A. A. Evans, T. Ishikawa, T. Yamaguchi, and E. Lauga, Phys. Fluids 23, 111702 (2011). 10.1063/1.3660268 CrossrefGoogle Scholar
  • 79 N. Oyama, J. J. Molina, and R. Yamamoto, Phys. Rev. E 93, 043114 (2016). 10.1103/PhysRevE.93.043114 CrossrefGoogle Scholar
  • 80 N. Oyama, J. J. Molina, and R. Yamamoto, arXiv:1612.00135. Google Scholar
  • 81 A. Zöttl and H. Stark, Phys. Rev. Lett. 112, 118101 (2014). 10.1103/PhysRevLett.112.118101 CrossrefGoogle Scholar
  • 82 J. B. Delfau, J. J. Molina, and M. Sano, Europhys. Lett. 114, 24001 (2016). 10.1209/0295-5075/114/24001 CrossrefGoogle Scholar