J. Phys. Soc. Jpn. 86, 104713 (2017) [3 Pages]
FULL PAPERS

Magnetization Process of the S = 1/2 Two-Leg Organic Spin-Ladder Compound BIP-BNO

+ Affiliations
1Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan2Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan3Department of Physical Science, Osaka Prefecture University, Sakai 599-8531, Japan4Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan5Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, U.S.A.

We have measured the magnetization of the organic compound BIP-BNO [3,5′-bis(N-tert-butylaminoxyl)-3′,5-dibromobiphenyl] up to 76 T, at which the magnetization is saturated. The S = 1/2 antiferromagnetic Heisenberg (AFH) two-leg spin-ladder model accounts for the magnetization curve, which is well reproduced by quantum Monte Carlo calculations. The exchange constants on the rung and leg of the ladder are evaluated as Jrung/kB = 65.7 K and Jleg/kB = 14.1 K, respectively, which is in the strong coupling region of Jrung/Jleg > 1. The results provide strong evidence that BIP-BNO is an S = 1/2 AFH two-leg spin ladder.

©2017 The Physical Society of Japan

References

  • 1 E. Dagotto and T. M. Rice, Science 271, 618 (1996). 10.1126/science.271.5249.618 CrossrefGoogle Scholar
  • 2 E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744 (1992). 10.1103/PhysRevB.45.5744 CrossrefGoogle Scholar
  • 3 T. M. Rice, S. Gopalan, and M. Sigrist, Physica B 199–200, 378 (1994). 10.1016/0921-4526(94)91843-0 CrossrefGoogle Scholar
  • 4 M. Sigrist, T. M. Rice, and F. C. Zhang, Phys. Rev. B 49, 12058 (1994). 10.1103/PhysRevB.49.12058 CrossrefGoogle Scholar
  • 5 M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, J. Phys. Soc. Jpn. 65, 2764 (1996). 10.1143/JPSJ.65.2764 LinkGoogle Scholar
  • 6 M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kinoshita, Phys. Rev. Lett. 73, 3463 (1994). 10.1103/PhysRevLett.73.3463 CrossrefGoogle Scholar
  • 7 B. C. Watson, V. N. Kotov, M. W. Meisel, D. W. Hall, G. E. Granroth, W. T. Montfrooij, S. E. Nagler, D. A. Jensen, R. Backov, M. A. Petruska, G. E. Fanucci, and D. R. Talham, Phys. Rev. Lett. 86, 5168 (2001). 10.1103/PhysRevLett.86.5168 CrossrefGoogle Scholar
  • 8 S. Sachdev, Science 288, 475 (2000). 10.1126/science.288.5465.475 CrossrefGoogle Scholar
  • 9 D. C. Johnston, Phys. Rev. B 54, 13009 (1996). 10.1103/PhysRevB.54.13009 CrossrefGoogle Scholar
  • 10 B. R. Patyal, B. L. Scott, and R. D. Willett, Phys. Rev. B 41, 1657 (1990). 10.1103/PhysRevB.41.1657 CrossrefGoogle Scholar
  • 11 Ch. Rüegg, K. Kiefer, B. Thielemann, D. F. McMorrow, V. Zapf, B. Normand, M. B. Zvonarev, P. Bouillot, C. Kollath, T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, and K. W. Krämer, Phys. Rev. Lett. 101, 247202 (2008). 10.1103/PhysRevLett.101.247202 CrossrefGoogle Scholar
  • 12 M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, and T. Giamarchi, Phys. Rev. Lett. 101, 137207 (2008). 10.1103/PhysRevLett.101.137207 CrossrefGoogle Scholar
  • 13 C. P. Landee, M. M. Turnbull, C. Galeriu, J. Giantsidis, and F. M. Woodward, Phys. Rev. B 63, 100402(R) (2001). 10.1103/PhysRevB.63.100402 CrossrefGoogle Scholar
  • 14 M. T. Batchelor, X.-W. Guan, N. Oelkers, K. Sakai, Z. Tsuboi, and A. Foerster, Phys. Rev. Lett. 91, 217202 (2003). 10.1103/PhysRevLett.91.217202 CrossrefGoogle Scholar
  • 15 Z. Honda, Y. Nonomura, and K. Katsumata, J. Phys. Soc. Jpn. 66, 3689 (1997). 10.1143/JPSJ.66.3689 LinkGoogle Scholar
  • 16 C. Rovira, J. Veciana, E. Ribera, J. Tarrés, E. Canadell, R. Rousseau, M. Mas, E. Molins, M. Almeida, R. T. Henriques, J. Morgado, J.-P. Schoeffel, and J.-P. Pouget, Angew. Chem., Int. Ed. 36, 2324 (1997). 10.1002/anie.199723241 CrossrefGoogle Scholar
  • 17 A. Shapiro, C. P. Landee, M. M. Turnbull, J. Jornet, M. Deumal, J. J. Novoa, M. A. Robb, and W. Lewis, J. Am. Chem. Soc. 129, 952 (2007). 10.1021/ja066330m CrossrefGoogle Scholar
  • 18 T. Hong, A. Zheludev, H. Manaka, and L.-P. Regnault, Phys. Rev. B 81, 060410(R) (2010). 10.1103/PhysRevB.81.060410 CrossrefGoogle Scholar
  • 19 T. Hong, Y. H. Kim, C. Hotta, Y. Takano, G. Tremelling, M. M. Turnbull, C. P. Landee, H.-J. Kang, N. B. Christensen, K. Lefmann, K. P. Schmidt, G. S. Uhrig, and C. Broholm, Phys. Rev. Lett. 105, 137207 (2010). 10.1103/PhysRevLett.105.137207 CrossrefGoogle Scholar
  • 20 M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, and M. Horvatić, Phys. Rev. Lett. 111, 106404 (2013). 10.1103/PhysRevLett.111.106404 CrossrefGoogle Scholar
  • 21 M. Jeong, D. Schmidiger, H. Mayaffre, M. Klanjšek, C. Berthier, W. Knafo, G. Ballon, B. Vignolle, S. Krämer, A. Zheludev, and M. Horvatić, Phys. Rev. Lett. 117, 106402 (2016). 10.1103/PhysRevLett.117.106402 CrossrefGoogle Scholar
  • 22 B. Chiari, O. Piovesana, T. Tarantelli, and P. F. Zanazzi, Inorg. Chem. 29, 1172 (1990). 10.1021/ic00331a013 CrossrefGoogle Scholar
  • 23 G. Chaboussant, P. A. Crowell, L. P. Lévy, O. Piovesana, A. Madouri, and D. Mailly, Phys. Rev. B 55, 3046 (1997). 10.1103/PhysRevB.55.3046 CrossrefGoogle Scholar
  • 24 G. Chaboussant, Y. Fagot-Revurat, M.-H. Julien, M. E. Hanson, C. Berthier, M. Horvatić, L. P. Lévy, and O. Piovesana, Phys. Rev. Lett. 80, 2713 (1998). 10.1103/PhysRevLett.80.2713 CrossrefGoogle Scholar
  • 25 X. Wang and L. Yu, Phys. Rev. Lett. 84, 5399 (2000). 10.1103/PhysRevLett.84.5399 CrossrefGoogle Scholar
  • 26 M. B. Stone, Y. Chen, J. Rittner, H. Yardimci, D. H. Reich, C. Broholm, D. V. Ferraris, and T. Lectka, Phys. Rev. B 65, 064423 (2002). 10.1103/PhysRevB.65.064423 CrossrefGoogle Scholar
  • 27 M. Clémancey, H. Mayaffre, M.-H. Julien, C. Berthier, P. Ségransan, A. Hassan, A. G. M. Jansen, I. Sheikin, B. Chiari, A. Cinti, and O. Piovesana, J. Magn. Magn. Mater. 272–276, 962 (2004). 10.1016/j.jmmm.2003.12.672 CrossrefGoogle Scholar
  • 28 K. Katoh, Y. Hosokoshi, K. Inoue, and T. Goto, J. Phys. Soc. Jpn. 69, 1008 (2000). 10.1143/JPSJ.69.1008 LinkGoogle Scholar
  • 29 K. Katoh, Y. Hosokoshi, K. Inoue, M. I. Bartashevich, H. Nakano, and T. Goto, J. Phys. Chem. Solids 63, 1277 (2002). 10.1016/S0022-3697(02)00042-2 CrossrefGoogle Scholar
  • 30 K. Kindo, J. Phys.: Conf. Ser. 51, 522 (2006). 10.1088/1742-6596/51/1/118 CrossrefGoogle Scholar
  • 31 S. Takeyama, R. Sakakura, Y. H. Matsuda, A. Miyata, and M. Tokunaga, J. Phys. Soc. Jpn. 81, 014702 (2012). 10.1143/JPSJ.81.014702 LinkGoogle Scholar
  • 32 H. Suwa and S. Todo, Phys. Rev. Lett. 105, 120603 (2010). 10.1103/PhysRevLett.105.120603 CrossrefGoogle Scholar
  • 33 H. Suwa, Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin–Phonon Complex Systems (Springer, Tokyo, 2014) Chap. 2. 10.1007/978-4-431-54517-0 CrossrefGoogle Scholar
  • 34 Y. Nakazawa, M. Tamura, N. Shirakawa, D. Shiomi, M. Takahashi, M. Kinoshita, and M. Ishikawa, Phys. Rev. B 46, 8906 (1992). 10.1103/PhysRevB.46.8906 CrossrefGoogle Scholar
  • 35 H. Ohta, K. Kirita, T. Kunimoto, S. Okubo, Y. Hosokoshi, K. Katoh, K. Inoue, A. Ogasahara, and S. Miyashita, J. Phys. Soc. Jpn. 71, 2640 (2002). 10.1143/JPSJ.71.2640 LinkGoogle Scholar
  • 36 J. C. Bonner, S. A. Friedberg, H. Kobayashi, D. L. Meier, and H. W. J. Blöte, Phys. Rev. B 27, 248 (1983). 10.1103/PhysRevB.27.248 CrossrefGoogle Scholar