J. Phys. Soc. Jpn. 86, 124802 (2017) [4 Pages]
FULL PAPERS

Synthesis, Crystal Structure, and Physical Properties of New Layered Oxychalcogenide La2O2Bi3AgS6

+ Affiliations
1Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan2Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan3Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan4Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan

We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) Å and c = 19.412(1) Å, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2–S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ∼ 20 Å). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.

©2017 The Physical Society of Japan

References

  • 1 J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986). 10.1007/BF01303701 CrossrefGoogle Scholar
  • 2 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987). 10.1103/PhysRevLett.58.908 CrossrefGoogle Scholar
  • 3 Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006). 10.1021/ja063355c CrossrefGoogle Scholar
  • 4 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008). 10.1021/ja800073m CrossrefGoogle Scholar
  • 5 I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997). 10.1103/PhysRevB.56.R12685 CrossrefGoogle Scholar
  • 6 D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000). 10.1126/science.287.5455.1024 CrossrefGoogle Scholar
  • 7 Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510 (2012). 10.1103/PhysRevB.86.220510 CrossrefGoogle Scholar
  • 8 S. K. Singh, A. Kumar, B. Gahtori, S. Kirtan, G. Sharma, S. Patnaik, and V. P. S. Awana, J. Am. Chem. Soc. 134, 16504 (2012). 10.1021/ja307245a CrossrefGoogle Scholar
  • 9 Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012). 10.1143/JPSJ.81.114725 LinkGoogle Scholar
  • 10 J. Xing, S. Li, X. Ding, H. Yang, and H. H. Wen, Phys. Rev. B 86, 214518 (2012). 10.1103/PhysRevB.86.214518 CrossrefGoogle Scholar
  • 11 S. Demura, K. Deguchi, Y. Mizuguchi, K. Sato, R. Honjyo, A. Yamashita, T. Yamaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, H. Okazaki, T. Ozaki, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 84, 024709 (2015). 10.7566/JPSJ.84.024709 LinkGoogle Scholar
  • 12 R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, J. Supercond. Novel Magn. 26, 499 (2013). 10.1007/s10948-012-2097-9 CrossrefGoogle Scholar
  • 13 S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 82, 033708 (2013). 10.7566/JPSJ.82.033708 LinkGoogle Scholar
  • 14 G. S. Thakur, G. K. Selvan, Z. Haque, L. C. Gupta, S. L. Samal, S. Arumugam, and A. K. Ganguli, Inorg. Chem. 54, 1076 (2015). 10.1021/ic5023938 CrossrefGoogle Scholar
  • 15 H. F. Zhai, Z. T. Tang, H. Jiang, K. Xu, K. Zhang, P. Zhang, J. K. Bao, Y. L. Sun, W. H. Jiao, I. Nowik, I. Felner, Y. K. Li, X. F. Xu, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 90, 064518 (2014). 10.1103/PhysRevB.90.064518 CrossrefGoogle Scholar
  • 16 H. F. Zhai, P. Zhang, S. Q. Wu, C. Y. He, Z. T. Tang, H. Jiang, Y. L. Sun, J. K. Bao, I. Nowik, I. Felner, Y. W. Zeng, Y. K. Li, X. F. Xu, Q. Tao, Z. A. Xu, and G. H. Cao, J. Am. Chem. Soc. 136, 15386 (2014). 10.1021/ja508564s CrossrefGoogle Scholar
  • 17 Y. Mizuguchi, A. Omachi, Y. Goto, Y. Kamihara, M. Matoba, T. Hiroi, J. Kajitani, and O. Miura, J. Appl. Phys. 116, 163915 (2014). 10.1063/1.4900953 CrossrefGoogle Scholar
  • 18 A. Nishida, O. Miura, C. H. Lee, and Y. Mizuguchi, Appl. Phys. Express 8, 111801 (2015). 10.7567/APEX.8.111801 CrossrefGoogle Scholar
  • 19 A. Nishida, H. Nishiate, C. H. Lee, O. Miura, and Y. Mizuguchi, J. Phys. Soc. Jpn. 85, 074702 (2016). 10.7566/JPSJ.85.074702 LinkGoogle Scholar
  • 20 Y. L. Sun, A. Ablimit, H. F. Zhai, J. K. Bao, Z. T. Tang, X. B. Wang, N. L. Wang, C. M. Feng, and G. H. Cao, Inorg. Chem. 53, 11125 (2014). 10.1021/ic501687h CrossrefGoogle Scholar
  • 21 Y. Goto, J. Kajitani, Y. Mizuguchi, Y. Kamihara, and M. Matoba, J. Phys. Soc. Jpn. 84, 085003 (2015). 10.7566/JPSJ.84.085003 LinkGoogle Scholar
  • 22 H. Usui, K. Suzuki, and K. Kuroki, Phys. Rev. B 86, 220501 (2012). 10.1103/PhysRevB.86.220501 CrossrefGoogle Scholar
  • 23 H. Usui and K. Kuroki, Novel Supercond. Mater. 1, 50 (2015). 10.1515/nsm-2015-0005 CrossrefGoogle Scholar
  • 24 Y. Mizuguchi, T. Hiroi, J. Kajitani, H. Takatsu, H. Kadowaki, and O. Miura, J. Phys. Soc. Jpn. 83, 053704 (2014). 10.7566/JPSJ.83.053704 LinkGoogle Scholar
  • 25 J. Liu, D. Fang, Z. Wang, J. Xing, Z. Du, X. Zhu, H. Yang, and H. H. Wen, Europhys. Lett. 106, 67002 (2014). 10.1209/0295-5075/106/67002 CrossrefGoogle Scholar
  • 26 C. Morice, R. Akashi, T. Koretsune, S. S. Saxena, and R. Arita, Phys. Rev. B 95, 180505 (2017). 10.1103/PhysRevB.95.180505 CrossrefGoogle Scholar
  • 27 K. Suzuki, H. Usui, K. Kuroki, and H. Ikeda, Phys. Rev. B 96, 024513 (2017). 10.1103/PhysRevB.96.024513 CrossrefGoogle Scholar
  • 28 Y. Ota, K. Okazaki, H. Q. Yamamoto, T. Yamamoto, S. Watanabe, C. Chen, M. Nagao, S. Watauchi, I. Tanaka, Y. Takano, and S. Shin, Phys. Rev. Lett. 118, 167002 (2017). 10.1103/PhysRevLett.118.167002 CrossrefGoogle Scholar
  • 29 K. Hoshi, Y. Goto, and Y. Mizuguchi, arXiv:1708.08252. Google Scholar
  • 30 Y. Mizuguchi, Y. Hijikata, T. Abe, C. Moriyoshi, Y. Kuroiwa, Y. Goto, A. Miura, S. Lee, S. Torii, T. Kamiyama, C. H. Lee, M. Ochi, and K. Kuroki, Europhys. Lett. 119, 26002 (2017). 10.1209/0295-5075/119/26002 CrossrefGoogle Scholar
  • 31 S. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori, C. Moriyoshi, Y. Kubota, Y. Kuroiwa, and K. Sugimoto, Rev. Sci. Instrum. 88, 085111 (2017). 10.1063/1.4999454 CrossrefGoogle Scholar
  • 32 F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007). 10.4028/www.scientific.net/SSP.130.15 CrossrefGoogle Scholar
  • 33 K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). 10.1107/S0021889808012016 CrossrefGoogle Scholar
  • 34 A. Miura, T. Oshima, K. Maeda, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Meng, X. D. Wen, M. Nagao, M. Higuchi, and K. Tadanaga, J. Mater. Chem. A 5, 14270 (2017). 10.1039/C7TA04440B CrossrefGoogle Scholar
  • 35 W. A. Phelan, D. C. Wallace, K. E. Arpino, J. R. Neilson, K. J. Livi, C. R. Seabourne, A. J. Scott, and T. M. McQueen, J. Am. Chem. Soc. 135, 5372 (2013). 10.1021/ja4011767 CrossrefGoogle Scholar
  • 36 A. Miura, Y. Mizuguchi, T. Sugawara, Y. Wang, T. Takei, N. Kumada, E. Magome, C. Moriyoshi, Y. Kuroiwa, O. Miura, and K. Tadanaga, Inorg. Chem. 54, 10462 (2015). 10.1021/acs.inorgchem.5b01919 CrossrefGoogle Scholar
  • 37 Y. Mizuguchi, A. Nishida, A. Omachi, and O. Miura, Cogent Phys. 3, 1156281 (2016). 10.1080/23311940.2016.1156281 CrossrefGoogle Scholar
  • 38 Y. Mizuguchi, J. Phys. Chem. Solids 84, 34 (2015). 10.1016/j.jpcs.2014.09.003 CrossrefGoogle Scholar