J. Phys. Soc. Jpn. 88, 024010 (2019) [7 Pages]

A New Centrality Measure Based on Topologically Biased Random Walks for Multilayer Networks

+ Affiliations
School of Computer Science and Engineering, Nanjing University of Science and Technology, 210094, China

In this paper, we propose a new multirank method based on topologically biased random walks for simultaneously ranking the nodes and layers in multilayer networks, referred to as the topologically biased random walks (TBRW) centrality. The centrality of nodes and layers are obtained by developing an iterative algorithm for solving a set of tensor equations. Under some conditions, the existence of such centrality is also proven. Furthermore, the convergence of the proposed iterative algorithm is established. Numerical experiments on two real-world multilayer networks (i.e., multiplex citation network and European Air Transportation Networks) are carried out to show the effectiveness of the proposed algorithm and to compare it to other existing centrality measures.

©2019 The Physical Society of Japan


  • 1 S. Boccaletti, V. Latora, Y. Moreno, M. Chavezf, and D. U. Hwang, Phys. Rep. 424, 175 (2006). 10.1016/j.physrep.2005.10.009 CrossrefGoogle Scholar
  • 2 L. C. Freeman, Soc. Networks 1, 215 (1978). 10.1016/0378-8733(78)90021-7 CrossrefGoogle Scholar
  • 3 M. E. J. Newman, Soc. Networks 27, 39 (2005). 10.1016/j.socnet.2004.11.009 CrossrefGoogle Scholar
  • 4 S. Gao, J. Ma, Z. Chen, G. Wang, and C. Xing, Physica A 403, 130 (2014). 10.1016/j.physa.2014.02.032 CrossrefGoogle Scholar
  • 5 P. Bonacich, Am. J. Sociol. 92, 1170 (1987).10.1086/228631 CrossrefGoogle Scholar
  • 6 T. Agryzkov, J. L. Oliver, L. Tortosa, and J. F. Vicent, Appl. Math. Comput. 219, 2186 (2012). 10.1016/j.amc.2012.08.064 CrossrefGoogle Scholar
  • 7 J. M. Kleinberg, JACM 46, 604 (1999). 10.1145/324133.324140 CrossrefGoogle Scholar
  • 8 M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas, Nat. Commun. 6, 6868 (2015). 10.1038/ncomms7868 CrossrefGoogle Scholar
  • 9 L. Solá, M. Romance, R. Criado, J. Flores, A. G. del Amo, and S. Boccaletti, Chaos 23, 033131 (2013). 10.1063/1.4818544 CrossrefGoogle Scholar
  • 10 D. Wang and X. Zou, Appl. Math. Modelling 54, 46 (2018). 10.1016/j.apm.2017.07.012 CrossrefGoogle Scholar
  • 11 C. Ding and K. Li, Neurocomputing 312, 263 (2018). 10.1016/j.neucom.2018.05.109 CrossrefGoogle Scholar
  • 12 A. Halu, R. J. Mondragón, P. Panzarasa, and G. Bianconi, PLOS ONE 8, e78293 (2013). 10.1371/journal.pone.0078293 CrossrefGoogle Scholar
  • 13 A. Valdeolivas, L. Tichit, C. Navarro, S. Perrin, G. Odelin, N. Levy, P. Cau, E. Remy, and A. Baudot, Bioinformatics (in press) [DOI: 10.1093/bioinformatics/bty637]. Google Scholar
  • 14 C. Rahmede, J. Iacovacci, A. Arenas, and G. Bianconi, arXiv:1703.05833. Google Scholar
  • 15 F. Tudisco, F. Arrigo, and A. Gautier, SIAM J. Appl. Math. 78, 853 (2018). 10.1137/17M1137668 CrossrefGoogle Scholar
  • 16 M. K. Ng, X. Li, and Y. Ye, Proc. 17th Int. Conf. ACM SIGKDD on Knowledge Discovery and Data Mining, New York, 2011, p. 1217.10.1145/2020408.2020594 CrossrefGoogle Scholar
  • 17 X. Li, M. K. Ng, and Y. Ye, Proc. 12th Int. Conf. Siam on Data Mining, California, 2012, p. 141.10.1137/1.9781611972825.13 CrossrefGoogle Scholar
  • 18 S. Boccaletti, G. Bianconi, R. Criado, C. I. D. Genio, J. Gómez-Gardenes, M. Romance, I. S. Nadal, Z. Wang, and M. Zanin, Phys. Rep. 544, 1 (2014). 10.1016/j.physrep.2014.07.001 CrossrefGoogle Scholar
  • 19 M. Bonaventura, V. Nicosia, and V. Latora, Phys. Rev. E 89, 012803 (2014). 10.1103/PhysRevE.89.012803 CrossrefGoogle Scholar
  • 20 V. Zlatić, A. Gabrielli, and G. Caldarelli, Phys. Rev. E 82, 066109 (2010). 10.1103/PhysRevE.82.066109 CrossrefGoogle Scholar
  • 21 A. Cardillo, J. Gómezgardeñes, M. Zanin, M. Romance, D. Papo, F. D. Pozo, and S. Boccaletti, Sci. Rep. 3, 1344 (2013). 10.1038/srep01344 CrossrefGoogle Scholar
  • 22 M. G. Kendall, Biometrika 30, 81 (1938). 10.1093/biomet/30.1-2.81 CrossrefGoogle Scholar