J. Phys. Soc. Jpn. 88, 024401 (2019) [7 Pages]
FULL PAPERS

Dynamical Properties of the Finite-size Dicke Model Coupled to a Thermal Reservoir

+ Affiliations
Department of Electronic and Physical Systems, Waseda University, Shinjuku, Tokyo 169-8555, Japan

We investigate the dynamical properties of the finite-size Dicke model coupled to a photon reservoir in the dispersive regime. The system–reservoir coupling in our Hamiltonian includes counter-rotating terms, which are relevant in the strong atom–cavity coupling. Because the dispersive regime is considered, the dynamics of low-energy states are described sufficiently accurately within the finite-dimensional subspace of the dressed states. Using the separation of the time scales between the system and the reservoir, we derive the Markovian quantum master equation in the subspace without ignoring the counter-rotating terms. The temporal evolution of the expectation of the cavity mode shows that the bifurcation of the long-lived state corresponds to the superradiant transition in the isolated model. The master equation explicitly gives the steady state solution. The numerical results for the first-order correlation function on the steady state indicate that the strong atom–cavity coupling enhances the coherence and softens the dephasing in the superradiant region.

©2019 The Physical Society of Japan

References

  • 1 K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature 464, 1301 (2010). 10.1038/nature09009 CrossrefGoogle Scholar
  • 2 F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner, and T. Esslinger, Proc. Natl. Acad. Sci. U.S.A. 110, 11763 (2013). 10.1073/pnas.1306993110 CrossrefGoogle Scholar
  • 3 T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, and Y. Takahashi, Sci. Adv. 3, e1701513 (2017). 10.1126/sciadv.1701513 CrossrefGoogle Scholar
  • 4 M. Haeberlein, F. Deppe, A. Kurcz, J. Goetz, A. Baust, P. Eder, K. Fedorov, M. Fischer, E. P. Menzel, M. J. Schwarz, F. Wulschner, E. Xie, L. Zhong, E. Solano, A. Marx, J.-J. García-Ripoll, and R. Gross, arXiv:1506.09114. Google Scholar
  • 5 T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010). 10.1038/nphys1730 CrossrefGoogle Scholar
  • 6 F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2016) EP. 10.1038/nphys3906 CrossrefGoogle Scholar
  • 7 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). 10.1103/RevModPhys.80.885 CrossrefGoogle Scholar
  • 8 H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, U.K., 2007). CrossrefGoogle Scholar
  • 9 H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, U.K., 2009). CrossrefGoogle Scholar
  • 10 F. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84, 043832 (2011). 10.1103/PhysRevA.84.043832 CrossrefGoogle Scholar
  • 11 M. Bamba and T. Ogawa, Phys. Rev. A 89, 023817 (2014). 10.1103/PhysRevA.89.023817 CrossrefGoogle Scholar
  • 12 R. H. Dicke, Phys. Rev. 93, 99 (1954). 10.1103/PhysRev.93.99 CrossrefGoogle Scholar
  • 13 K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973). 10.1016/0003-4916(73)90039-0 CrossrefGoogle Scholar
  • 14 Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973). 10.1103/PhysRevA.7.831 CrossrefGoogle Scholar
  • 15 C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003). 10.1103/PhysRevE.67.066203 CrossrefGoogle Scholar
  • 16 D. Nagy, G. Szirmai, and P. Domokos, Phys. Rev. A 84, 043637 (2011). 10.1103/PhysRevA.84.043637 CrossrefGoogle Scholar
  • 17 E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, Phys. Rev. A 87, 023831 (2013). 10.1103/PhysRevA.87.023831 CrossrefGoogle Scholar
  • 18 S. Fuchs, J. Ankerhold, M. Blencowe, and B. Kubala, J. Phys. B 49, 035501 (2016). 10.1088/0953-4075/49/3/035501 CrossrefGoogle Scholar
  • 19 B. Öztop, M. Bordyuh, Ö. E. Müstecaplıoğlu, and H. E. Türeci, New J. Phys. 14, 085011 (2012). 10.1088/1367-2630/14/8/085011 CrossrefGoogle Scholar
  • 20 J. Larson and E. K. Irish, J. Phys. A 50, 174002 (2017). 10.1088/1751-8121/aa65dc CrossrefGoogle Scholar
  • 21 D. Barberena, L. Lamata, and E. Solano, Sci. Rep. 7, 8774 (2017). 10.1038/s41598-017-09110-7 CrossrefGoogle Scholar
  • 22 A. Caldeira and A. Leggett, Physica A 121, 587 (1983). 10.1016/0378-4371(83)90013-4 CrossrefGoogle Scholar
  • 23 P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Adv. Quant. Technol. 0, 1800043 (2018). 10.1002/qute.201800043 CrossrefGoogle Scholar
  • 24 R. J. Glauber, Phys. Rev. 130, 2529 (1963). 10.1103/PhysRev.130.2529 CrossrefGoogle Scholar
  • 25 D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, Nat. Phys. 7, 154 (2011). 10.1038/nphys1845 CrossrefGoogle Scholar