J. Phys. Soc. Jpn. 88, 034004 (2019) [12 Pages]
FULL PAPERS

Bayesian Hamiltonian Selection in X-ray Photoelectron Spectroscopy

+ Affiliations
1Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan2Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan3Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan4Kyushu Synchrotron Light Research Center, Tosu, Saga 841-0005, Japan5Research and Services Division of Materials Data and Integrated Systems, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

Core-level X-ray photoelectron spectroscopy (XPS) is a useful measurement technique for investigating the electronic states of a strongly correlated electron system. Usually, to extract physical information of a target object from a core-level XPS spectrum, we need to set an effective Hamiltonian by physical consideration so as to express complicated electron-to-electron interactions in the transition of core-level XPS, and manually tune the physical parameters of the effective Hamiltonian so as to represent the XPS spectrum. Then, we can extract physical information from the tuned parameters. In this paper, we propose an automated method for analyzing core-level XPS spectra based on the Bayesian model selection framework, which selects the effective Hamiltonian and estimates its parameters automatically. The Bayesian model selection, which often has a large computational cost, was carried out by the exchange Monte Carlo sampling method. By applying our proposed method to the 3d core-level XPS spectra of Ce and La compounds, we confirmed that our proposed method selected an effective Hamiltonian and estimated its parameters appropriately; these results were consistent with conventional knowledge obtained from physical studies. Moreover, using our proposed method, we can also evaluate the uncertainty of its estimation values and clarify why the effective Hamiltonian was selected. Such information is difficult to obtain by the conventional analysis method.

©2019 The Physical Society of Japan

References

  • 1 J. Kanamori and A. Kotani, Proc. 10th Taniguchi Int. Symp., 1987, p. 81. 10.1007/978-3-642-83437-0 CrossrefGoogle Scholar
  • 2 A. Kotani and Y. Toyozawa, J. Phys. Soc. Jpn. 37, 912 (1974). 10.1143/JPSJ.37.912 LinkGoogle Scholar
  • 3 A. Kotani, H. Mizuta, T. Jo, and J. C. Parlebas, Solid State Commun. 53, 805 (1985). 10.1016/0038-1098(85)90223-6 CrossrefGoogle Scholar
  • 4 A. Kotani, M. Okada, T. Jo, A. Bianconi, A. Marcelli, and J. C. Parlebas, J. Phys. Soc. Jpn. 56, 798 (1987). 10.1143/JPSJ.56.798 LinkGoogle Scholar
  • 5 F. M. F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, London, 2008). CrossrefGoogle Scholar
  • 6 K. Nagata, S. Sugita, and M. Okada, Neural Networks 28, 82 (2012). 10.1016/j.neunet.2011.12.001 CrossrefGoogle Scholar
  • 7 K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). 10.1143/JPSJ.65.1604 LinkGoogle Scholar
  • 8 S. Tokuda, K. Nagata, and M. Okada, J. Phys. Soc. Jpn. 86, 024001 (2017). 10.7566/JPSJ.86.024001 LinkGoogle Scholar
  • 9 S. Murata, K. Nagata, M. Uemura, and M. Okada, J. Phys. Soc. Jpn. 85, 104003 (2016). 10.7566/JPSJ.85.104003 LinkGoogle Scholar
  • 10 Y. Mototake, Y. Igarashi, H. Takenaka, K. Nagata, and M. Okada, J. Phys. Soc. Jpn. 87, 114004 (2018). 10.7566/JPSJ.87.114004 LinkGoogle Scholar
  • 11 T. Kasai, K. Nagata, M. Okada, and T. Kigawa, J. Phys.: Conf. Ser. 699, 012003 (2016). 10.1088/1742-6596/699/1/012003 CrossrefGoogle Scholar
  • 12 K. Iwamitsu, S. Aihara, M. Okada, and I. Akai, J. Phys. Soc. Jpn. 85, 094716 (2016). 10.7566/JPSJ.85.094716 LinkGoogle Scholar
  • 13 P. K. Hong, H. Miyamoto, T. Niihara, S. Sugita, K. Nagata, J. M. Dohm, and M. Okada, J. Geol. Geophys. 5, 243 (2016). 10.4172/2381-8719.1000243 CrossrefGoogle Scholar
  • 14 F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990). 10.1103/PhysRevB.42.5459 CrossrefGoogle Scholar
  • 15 O. Gunnarsson and K. Schönhammer, Phys. Rev. B 28, 4315 (1983). 10.1103/PhysRevB.28.4315 CrossrefGoogle Scholar
  • 16 T. Jo and A. Kotani, J. Phys. Soc. Jpn. 57, 2288 (1988). 10.1143/JPSJ.57.2288 LinkGoogle Scholar
  • 17 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114 CrossrefGoogle Scholar
  • 18 W. K. Hastings, Biometrika 57, 97 (1970). 10.1093/biomet/57.1.97 CrossrefGoogle Scholar
  • 19 K. Nagata and S. Watanabe, Neural Networks 21, 980 (2008). 10.1016/j.neunet.2007.11.002 CrossrefGoogle Scholar
  • 20 D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New York, 1992). CrossrefGoogle Scholar
  • 21 K. Nagata, Y. Mototake, R. Muraoka, T. Sasaki, and M. Okada, arXiv:1812.05501 (2018). Google Scholar