J. Phys. Soc. Jpn. 88, 034710 (2019) [6 Pages]
FULL PAPERS

Hysteretic Current–Voltage Characteristics in the Deuterium-Dynamics-Triggered Charge-Ordered Phase of κ-D3(Cat-EDT-TTF)2

+ Affiliations
1The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan2Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan3AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba 277-8589, Japan

A purely organic material, κ-D3(Cat-EDT-TTF)2, undergoes a peculiar charge ordering transition triggered by deuterium localization in hydrogen bonds between two-dimensional conducting layers. Here, we report that the current density–electric field characteristics of this charge-ordered phase exhibit negative differential resistance and also hysteresis, which is considered to be induced by the deuterium dynamics. Upon the application of a pulsed voltage, the resistance irreversibly changes; namely, the initial charge-ordered state is changed to a metastable state through a high-conducting (excited) state, which results in the appearance of the hysteresis. Raman spectroscopy suggests that this metastable state is a non-charge-ordered dimer-Mott state. Interestingly, this state does not appear at low temperatures, and instead, the initial charge-ordered state reappears. These results are well understood by considering the temperature-dependent dynamics of hydrogen-bonded deuterium (i.e., localization/fluctuations) coupled to the π-electrons in the conducting layers. In contrast, the hydrogen analogue κ-H3(Cat-EDT-TTF)2, which is a dimer-Mott insulator without proton localization, does not show such hysteretic behavior.

©2019 The Physical Society of Japan

References

  • 1 R. S. Potember, T. O. Poehler, and D. O. Cowan, Appl. Phys. Lett. 34, 405 (1979). 10.1063/1.90814 CrossrefGoogle Scholar
  • 2 Y. Tokura, H. Okamoto, T. Koda, T. Mitani, and G. Saito, Phys. Rev. B 38, 2215 (1988). 10.1103/PhysRevB.38.2215 CrossrefGoogle Scholar
  • 3 Y. Iwasa, T. Koda, Y. Tokura, S. Koshihara, N. Iwasawa, and G. Saito, Appl. Phys. Lett. 55, 2111 (1989). 10.1063/1.102078 CrossrefGoogle Scholar
  • 4 R. Kumai, Y. Okimoto, and Y. Tokura, Science 284, 1645 (1999). 10.1126/science.284.5420.1645 CrossrefGoogle Scholar
  • 5 K. Inagaki, I. Terasaki, H. Mori, and T. Mori, J. Phys. Soc. Jpn. 73, 3364 (2004). 10.1143/JPSJ.73.3364 LinkGoogle Scholar
  • 6 F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, Nature 437, 522 (2005). 10.1038/nature04087 CrossrefGoogle Scholar
  • 7 M. M. Matsushita and T. Sugawara, J. Am. Chem. Soc. 127, 12450 (2005). 10.1021/ja053488i CrossrefGoogle Scholar
  • 8 K. Okamoto, T. Tanaka, W. Fujita, K. Awaga, and T. Inabe, Angew. Chem., Int. Ed. 45, 4516 (2006). 10.1002/anie.200600596 CrossrefGoogle Scholar
  • 9 T. Mori and T. Kawamoto, Annu. Rep. Prog. Chem., Sect. C 103, 134 (2007). 10.1039/B605647B CrossrefGoogle Scholar
  • 10 T. Mori, I. Terasaki, and H. Mori, J. Mater. Chem. 17, 4343 (2007). 10.1039/b710090f CrossrefGoogle Scholar
  • 11 S. Niizeki, F. Yoshikane, K. Kohno, K. Takahashi, H. Mori, Y. Bando, T. Kawamoto, and T. Mori, J. Phys. Soc. Jpn. 77, 073710 (2008). 10.1143/JPSJ.77.073710 LinkGoogle Scholar
  • 12 F. Sawano, T. Suko, T. S. Inada, S. Tasaki, I. Terasaki, H. Mori, T. Mori, Y. Nagami, N. Ikeda, M. Watanabe, and Y. Noda, J. Phys. Soc. Jpn. 78, 024714 (2009). 10.1143/JPSJ.78.024714 LinkGoogle Scholar
  • 13 T. S. Inada, I. Terasaki, H. Mori, and T. Mori, Phys. Rev. B 79, 165102 (2009). 10.1103/PhysRevB.79.165102 CrossrefGoogle Scholar
  • 14 T. Ozawa, K. Tamura, Y. Bando, T. Kawamoto, T. Mori, and I. Terasaki, Phys. Rev. B 80, 155106 (2009). 10.1103/PhysRevB.80.155106 CrossrefGoogle Scholar
  • 15 K. Tamura, T. Ozawa, Y. Bando, T. Kawamoto, and T. Mori, J. Appl. Phys. 107, 103716 (2010). 10.1063/1.3428388 CrossrefGoogle Scholar
  • 16 S. Niizeki, T. Asano, K. Takahashi, H. Mori, H. Matsuzaki, H. Okamoto, and Y. Nishio, Physica B 405, S37 (2010). 10.1016/j.physb.2009.11.098 CrossrefGoogle Scholar
  • 17 T. Ivek, I. Kovačević, M. Pinterić, B. Korin-Hamzić, S. Tomić, T. Knoblauch, D. Schweitzer, and M. Dressel, Phys. Rev. B 86, 245125 (2012). 10.1103/PhysRevB.86.245125 CrossrefGoogle Scholar
  • 18 K. Kodama, M. Kimata, Y. Takahide, N. Kurita, A. Harada, H. Satsukawa, T. Terashima, S. Uji, K. Yamamoto, and K. Yakushi, J. Phys. Soc. Jpn. 81, 044703 (2012). 10.1143/JPSJ.81.044703 LinkGoogle Scholar
  • 19 A. Ueda, S. Yamada, T. Isono, H. Kamo, A. Nakao, R. Kumai, H. Nakao, Y. Murakami, K. Yamamoto, Y. Nishio, and H. Mori, J. Am. Chem. Soc. 136, 12184 (2014). 10.1021/ja507132m CrossrefGoogle Scholar
  • 20 A. Ueda, Bull. Chem. Soc. Jpn. 90, 1181 (2017). 10.1246/bcsj.20170239 CrossrefGoogle Scholar
  • 21 K. Yamamoto, Y. Kanematsu, U. Nagashima, A. Ueda, H. Mori, and M. Tachikawa, Phys. Chem. Chem. Phys. 18, 29673 (2016). 10.1039/C6CP05414E CrossrefGoogle Scholar
  • 22 T. Isono, H. Kamo, A. Ueda, K. Takahashi, A. Nakao, R. Kumai, H. Nakano, K. Kobayashi, Y. Murakami, and H. Mori, Nat. Commun. 4, 1344 (2013). 10.1038/ncomms2352 CrossrefGoogle Scholar
  • 23 T. Isono, H. Kamo, A. Ueda, T. Takahashi, M. Kimata, H. Tajima, S. Tsuchiya, T. Terashima, S. Uji, and H. Mori, Phys. Rev. Lett. 112, 177201 (2014). 10.1103/PhysRevLett.112.177201 CrossrefGoogle Scholar
  • 24 T. Tsumuraya, H. Seo, R. Kato, and T. Miyazaki, Phys. Rev. B 92, 035102 (2015). 10.1103/PhysRevB.92.035102 CrossrefGoogle Scholar
  • 25 S. Yamashita, Y. Nakazawa, A. Ueda, and H. Mori, Phys. Rev. B 95, 184425 (2017). 10.1103/PhysRevB.95.184425 CrossrefGoogle Scholar
  • 26 M. Shimozawa, K. Hashimoto, A. Ueda, Y. Suzuki, K. Sugii, S. Yamada, Y. Imai, R. Kobayashi, K. Itoh, S. Iguchi, M. Naka, S. Ishihara, H. Mori, T. Sasaki, and M. Yamashita, Nat. Commun. 8, 1821 (2017). 10.1038/s41467-017-01849-x CrossrefGoogle Scholar
  • 27 M. Naka and S. Ishihara, Phys. Rev. B 97, 245110 (2018). 10.1103/PhysRevB.97.245110 CrossrefGoogle Scholar
  • 28 (Supplemental Material) Discussion about the Joule heating effect is provided online. This supports that the melting of the charge order is caused by the intrinsic electric-field effect. Google Scholar
  •   (29) The temperature of 140 K is actually lower than the deuterium localization temperature of 185 K;19) however, the Raman measurements indicate that, in this case, the deuterium is not localized at 140 K. One can imagine that the barrier of the double-well potential is lowered by the voltage application, which consequently allows the deuterium to fluctuate even at 140 K. Google Scholar
  •   (30) We expect that in the Vpulse-decreasing process [Fig. 3(d)], this dimer-Mott-type metastable state (R state) (Fig. 5 right) is changed to the charge-uniform high-conducting state (Fig. 5 center) by application of the pulsed voltage, where the H-bonded deuterium keeps fluctuating in the double-well potential. The switching from the low to the high-conducting state seen in H-TTF [Figs. 2(c), 3(f)–3(h)] should also be based on a similar scenario. The detailed mechanism is under investigation. Google Scholar
  • 31 A. Ueda, A. Hatakeyama, M. Enomoto, R. Kumai, Y. Murakami, and H. Mori, Chem.—Eur. J. 21, 15020 (2015). 10.1002/chem.201502047 CrossrefGoogle Scholar
  • 32 K. Yamamoto, Y. Kanematsu, U. Nagashima, A. Ueda, H. Mori, and M. Tachikawa, Chem. Phys. Lett. 674, 168 (2017). 10.1016/j.cplett.2017.02.073 CrossrefGoogle Scholar