J. Phys. Soc. Jpn. 88, 041003 (2019) [8 Pages]
SPECIAL TOPICS: Recent Progress in BiS2 Materials Science

Superconductivity in Europium Bismuth Sulfofluorides

+ Affiliations
1Department of Physics, Northwest University, Xian 710127, China2Department of Physics, Zhejiang University, Hangzhou 310027, China3Department of Physics, University of Texas at Dallas, Richardson, TX 75080, U.S.A.4Department of Physics, Ningbo University, Ningbo 315211, China

The layered bismuth sulfofluorides EuBiS2F and Eu3Bi2S4F4 show unique properties among all the BiS2-based superconductors. Both compounds exhibit a possible charge-density-wave (CDW) instability around 280 K and undergo superconducting transitions at 0.3 and 1.5 K, respectively, without extrinsic doping. The self-doping effect due to the mixed valence state of Eu ions, which allows charge transfer from Eu to BiS2 layers, accounts for the metallic behavior and superconductivity. Here we present a brief review of the research progress in these Eu-containing bismuth sulfofluorides, including the structure and electronic properties, external pressure effects, chemical pressure effects and doping effects. The results can provide important information towards a deeper understanding of BiS2-based superconductors.

©2019 The Physical Society of Japan


  • 1 Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510(R) (2012). 10.1103/PhysRevB.86.220510 CrossrefGoogle Scholar
  • 2 Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012). 10.1143/JPSJ.81.114725 LinkGoogle Scholar
  • 3 J. Xing, S. Li, X. Ding, H. Yang, and H. H. Wen, Phys. Rev. B 86, 214518 (2012). 10.1103/PhysRevB.86.214518 CrossrefGoogle Scholar
  • 4 S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, T. Ozaki, and H. Fujihisa, J. Phys. Soc. Jpn. 82, 033708 (2013). 10.7566/JPSJ.82.033708 LinkGoogle Scholar
  • 5 R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, J. Supercond. Novel Magn. 26, 499 (2013). 10.1007/s10948-012-2097-9 CrossrefGoogle Scholar
  • 6 D. Yazici, K. Huang, B. D. White, A. H. Chang, A. J. Friedman, and M. B. Maple, Philos. Mag. 93, 673 (2013). 10.1080/14786435.2012.724185 CrossrefGoogle Scholar
  • 7 H. Lei, K. Wang, M. Abeykoon, E. S. Bozin, and C. Petrovic, Inorg. Chem. 52, 10685 (2013). 10.1021/ic4018135 CrossrefGoogle Scholar
  • 8 X. Lin, X. X. Ni, B. Chen, X. F. Xu, X. X. Yang, J. H. Dai, Y. K. Li, X. J. Yang, Y. K. Luo, Q. Tao, G. H. Cao, and Z. A. Xu, Phys. Rev. B 87, 020504(R) (2013). 10.1103/PhysRevB.87.020504 CrossrefGoogle Scholar
  • 9 L. Li, Y. K. Li, Y. Jin, H. R. Huang, B. Chen, X. F. Xu, J. H. Dai, L. Zhang, X. J. Yang, H. F. Zhai, G. H. Cao, and Z. Xu, Phys. Rev. B 91, 014508 (2015). 10.1103/PhysRevB.91.014508 CrossrefGoogle Scholar
  • 10 H. Sakai, D. Kotajima, K. Saito, H. Wadati, Y. Wakisaka, M. Mizumaki, K. Nitta, Y. Tokura, and S. Ishiwata, J. Phys. Soc. Jpn. 83, 014709 (2014). 10.7566/JPSJ.83.014709 LinkGoogle Scholar
  • 11 Y. K. Li, X. Lin, N. Zhou, X. F. Xu, C. Cao, J. H. Dai, L. Zhang, Y. K. Luo, W. H. Jiao, Q. Tao, G. H. Cao, and Z. Xu, Supercond. Sci. Technol. 27, 035009 (2014). 10.1088/0953-2048/27/3/035009 CrossrefGoogle Scholar
  • 12 R. Céolin and N. Rodier, Acta Crystallogr., Sect. B 32, 1476 (1976). 10.1107/S0567740876005591 CrossrefGoogle Scholar
  • 13 V. S. Tanryverdiev, O. M. Aliev, and I. Aliev, II, Inorg. Mater. 31, 1361 (1995). Google Scholar
  • 14 T. Yildirim, Phys. Rev. B 87, 020506(R) (2013). 10.1103/PhysRevB.87.020506 CrossrefGoogle Scholar
  • 15 X. Wan, H. C. Ding, S. Y. Savrasov, and C. G. Duan, Phys. Rev. B 87, 115124 (2013). 10.1103/PhysRevB.87.115124 CrossrefGoogle Scholar
  • 16 B. Li, Z. W. Xing, and G. Q. Huang, Europhys. Lett. 101, 47002 (2013). 10.1209/0295-5075/101/47002 CrossrefGoogle Scholar
  • 17 H.-F. Zhai, Z.-T. Tang, H. Jiang, K. Xu, K. Zhang, P. Zhang, J.-K. Bao, Y.-L. Sun, W.-H. Jiao, I. Nowik, I. Felner, Y.-K. Li, X.-F. Xu, Q. Tao, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Phys. Rev. B 90, 064518 (2014). 10.1103/PhysRevB.90.064518 CrossrefGoogle Scholar
  • 18 H.-F. Zhai, P. Zhang, Z.-T. Tang, J.-K. Bao, H. Jiang, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, J. Phys.: Condens. Matter 27, 385701 (2015). 10.1088/0953-8984/27/38/385701 CrossrefGoogle Scholar
  • 19 M. Nagao, A. Miura, I. Ueta, S. Watauchi, and I. Tanaka, Solid State Commun. 245, 11 (2016). 10.1016/j.ssc.2016.07.017 CrossrefGoogle Scholar
  • 20 M. Tanaka, M. Nagao, R. Matsumoto, N. Kataoka, I. Ueta, H. Tanaka, S. Watauchi, I. Tanaka, and Y. Takano, J. Alloys Compd. 722, 467 (2017). 10.1016/j.jallcom.2017.06.125 CrossrefGoogle Scholar
  • 21 H.-F. Zhai, P. Zhang, S.-Q. Wu, C.-Y. He, Z.-T. Tang, H. Jiang, Y.-L. Sun, J.-K. Bao, I. Nowik, I. Felner, Y.-W. Zeng, Y.-K. Li, X.-F. Xu, Q. Tao, Z.-A. Xu, and G.-H. Cao, J. Am. Chem. Soc. 136, 15386 (2014). 10.1021/ja508564s CrossrefGoogle Scholar
  • 22 P. Zhang, H. F. Zhai, Z. J. Tang, L. Li, Y. K. Li, Q. Chen, J. Chen, Z. Wang, C. M. Feng, G. H. Cao, and Z. A. Xu, Europhys. Lett. 111, 27002 (2015). 10.1209/0295-5075/111/27002 CrossrefGoogle Scholar
  • 23 P. Zhang, H. F. Zhai, Z. Wang, J. Chen, C. M. Feng, G. H. Cao, and Z. A. Xu, Supercond. Sci. Technol. 30, 015005 (2017). 10.1088/0953-2048/30/1/015005 CrossrefGoogle Scholar
  • 24 K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). 10.1107/S0021889808012016 CrossrefGoogle Scholar
  • 25 N. E. Brese and M. Okeeffe, Acta Crystallogr., Sect. B 41, 244 (1985). 10.1107/S0108768185002063 CrossrefGoogle Scholar
  • 26 E. Paris, T. Sugimoto, T. Wakita, A. Barinov, K. Terashima, V. Kandyba, O. Proux, J. Kajitani, R. Higashinaka, T. D. Matsuda, Y. Aoki, T. Yokoya, T. Mizokawa, and N. L. Saini, Phys. Rev. B 95, 035152 (2017). 10.1103/PhysRevB.95.035152 CrossrefGoogle Scholar
  • 27 E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Nat. Phys. 2, 544 (2006). 10.1038/nphys360 CrossrefGoogle Scholar
  • 28 H. Usui, K. Suzuki, and K. Kuroki, Phys. Rev. B 86, 220501(R) (2012). 10.1103/PhysRevB.86.220501 CrossrefGoogle Scholar
  • 29 C. T. Wolowiec, D. Yazici, B. D. White, K. Huang, and M. B. Maple, Phys. Rev. B 88, 064503 (2013). 10.1103/PhysRevB.88.064503 CrossrefGoogle Scholar
  • 30 T. Tomita, M. Ebata, H. Soeda, H. Takahashi, H. Fujihisa, Y. Gotoh, Y. Mizuguchi, H. Izawa, O. Miura, S. Demura, K. Deguchi, and Y. Takano, J. Phys. Soc. Jpn. 83, 063704 (2014). 10.7566/JPSJ.83.063704 LinkGoogle Scholar
  • 31 C. Y. Guo, Y. Chen, M. Smidman, S. A. Chen, W. B. Jiang, H. F. Zhai, Y. F. Wang, G. H. Cao, J. M. Chen, X. Lu, and H. Q. Yuan, Phys. Rev. B 91, 214512 (2015). 10.1103/PhysRevB.91.214512 CrossrefGoogle Scholar
  • 32 G. S. Thakur, R. Jha, Z. Haque, V. P. S. Awana, L. C. Gupta, and A. K. Ganguli, Supercond. Sci. Technol. 28, 115010 (2015). 10.1088/0953-2048/28/11/115010 CrossrefGoogle Scholar
  • 33 Y. K. Luo, H. F. Zhai, P. Zhang, Z. A. Xu, G. H. Cao, and J. D. Thompson, Phys. Rev. B 90, 220510(R) (2014). 10.1103/PhysRevB.90.220510 CrossrefGoogle Scholar
  • 34 C. T. Wolowiec, B. D. White, I. Jeon, D. Yazici, K. Huang, and M. B. Maple, J. Phys.: Condens. Matter 25, 422201 (2013). 10.1088/0953-8984/25/42/422201 CrossrefGoogle Scholar
  • 35 D. Yazici, K. Huang, B. D. White, I. Jeon, V. W. Burnett, A. J. Friedman, I. K. Lum, M. Nallaiyan, S. Spagna, and M. B. Maple, Phys. Rev. B 87, 174512 (2013). 10.1103/PhysRevB.87.174512 CrossrefGoogle Scholar
  • 36 Z. Ren, Q. Tao, S. Jiang, C. M. Feng, C. Wang, J. H. Dai, G. H. Cao, and Z. A. Xu, Phys. Rev. Lett. 102, 137002 (2009). 10.1103/PhysRevLett.102.137002 CrossrefGoogle Scholar
  • 37 A. Krzton-Maziopa, Z. Guguchia, E. Pomjakushina, V. Pomjakushin, R. Khasanov, H. Luetkens, P. K. Biswas, A. Amato, H. Keller, and K. Conder, J. Phys.: Condens. Matter 26, 215702 (2014). 10.1088/0953-8984/26/21/215702 CrossrefGoogle Scholar
  • 38 G. Jinno, R. Jha, A. Yamada, R. Higashinaka, T. D. Matsuda, Y. Aoki, M. Nagao, O. Miura, and Y. Mizuguchi, J. Phys. Soc. Jpn. 85, 124708 (2016). 10.7566/JPSJ.85.124708 LinkGoogle Scholar
  • 39 Y. Goto, R. Sogabe, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 104712 (2017). 10.7566/JPSJ.86.104712 LinkGoogle Scholar
  • 40 J. Cheng, H. F. Zhai, Y. Wang, W. Xu, S. L. Liu, and G. H. Cao, Sci. Rep. 6, 37394 (2016). 10.1038/srep37394 CrossrefGoogle Scholar
  • 41 J. Cheng, P. Zhang, P. Dong, X. F. Wang, Y. Wang, X. Li, S. L. Liu, Y. K. Li, and Z. Xu, J. Alloys Compd. 743, 547 (2018). 10.1016/j.jallcom.2018.01.410 CrossrefGoogle Scholar
  • 42 Z. Haque, G. S. Thakur, G. K. Selvan, T. Block, O. Janka, R. Pottgen, A. G. Joshi, R. Parthasarathy, S. Arumugam, L. C. Gupta, and A. K. Ganguli, Inorg. Chem. 57, 37 (2018). 10.1021/acs.inorgchem.7b01555 CrossrefGoogle Scholar
  • 43 M. Kannan, G. K. Selvan, Z. Haque, G. S. Thakur, B. Wang, K. Ishigaki, Y. Uwatoko, L. C. Gupta, A. K. Ganguli, and S. Arumugam, Supercond. Sci. Technol. 30, 115011 (2017). 10.1088/1361-6668/aa8bf1 CrossrefGoogle Scholar
  • 44 Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015). 10.1038/srep14968 CrossrefGoogle Scholar
  • 45 Y. Hijikata, T. Abe, C. Moriyoshi, Y. Kuroiwa, Y. Goto, A. Miura, K. Tadanaga, Y. Wang, O. Miura, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 124802 (2017). 10.7566/JPSJ.86.124802 LinkGoogle Scholar
  • 46 Y. L. Sun, A. Ablimit, H. F. Zhai, J. K. Bao, Z. T. Tang, X. B. Wang, N. L. Wang, C. M. Feng, and G. H. Cao, Inorg. Chem. 53, 11125 (2014). 10.1021/ic501687h CrossrefGoogle Scholar
  • 47 R. Jha, Y. Goto, R. Higashinaka, T. D. Matsuda, Y. Aoki, and Y. Mizuguchi, J. Phys. Soc. Jpn. 87, 083704 (2018). 10.7566/JPSJ.87.083704 LinkGoogle Scholar