J. Phys. Soc. Jpn. 88, 044704 (2019) [6 Pages]

Possible Light-Induced Superconductivity in a Strongly Correlated Electron System

+ Affiliations
1Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany2Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland3Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan44th Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany

Using a nonequilibrium implementation of the Lanczos-based exact diagonalisation technique we study the possibility of the light-induced superconducting phase coherence in a solid state system after an ultrafast optical excitation. In particular, we investigate the buildup of superconducting correlations by calculating an exact time-dependent wave function reflecting the properties of the system in non-equilibrium and the corresponding transient response functions. Within our picture we identify a possible transient Meissner effect after dynamical quenching of the non-superconducting wavefunction and extract a characteristic superfluid density that we compare to experimental data. Finally, we find that the stability of the induced superconducting state depends crucially on the nature of the excitation quench: namely, a pure interaction quench induces a long-lived superconducting state, whereas a phase quench leads to a short-lived transient superconductor.

©2019 The Physical Society of Japan


  • 1 D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, Science 331, 189 (2011). 10.1126/science.1197294 CrossrefGoogle Scholar
  • 2 C. R. Hunt, D. Nicoletti, S. Kaiser, T. Takayama, H. Takagi, and A. Cavalleri, Phys. Rev. B 91, 020505 (2015). 10.1103/PhysRevB.91.020505 CrossrefGoogle Scholar
  • 3 S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu, M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri, Phys. Rev. B 89, 184516 (2014). 10.1103/PhysRevB.89.184516 CrossrefGoogle Scholar
  • 4 W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri, Nat. Mater. 13, 705 (2014). 10.1038/nmat3963 CrossrefGoogle Scholar
  • 5 C. R. Hunt, D. Nicoletti, S. Kaiser, D. Pröpper, T. Loew, J. Porras, B. Keimer, and A. Cavalleri, Phys. Rev. B 94, 224303 (2016). 10.1103/PhysRevB.94.224303 CrossrefGoogle Scholar
  • 6 M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Ricc, S. R. Clark, D. Jaksch, and A. Cavalleri, Nature 530, 461 (2016). 10.1038/nature16522 CrossrefGoogle Scholar
  • 7 S. Kaiser, Phys. Scr. 92, 103001 (2017). 10.1088/1402-4896/aa8201 CrossrefGoogle Scholar
  • 8 A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, Phys. Rev. Lett. 105, 067001 (2010). 10.1103/PhysRevLett.105.067001 CrossrefGoogle Scholar
  • 9 S. Dal Conte, C. Giannetti, G. Coslovich, F. Cilento, D. Bossini, T. Abebaw, F. Banfi, G. Ferrini, H. Eisaki, M. Greven, A. Damascelli, D. van der Marel, and F. Parmigiani, Science 335, 1600 (2012). 10.1126/science.1216765 CrossrefGoogle Scholar
  • 10 D. Nicoletti, E. Casandruc, Y. Laplace, V. Khanna, C. R. Hunt, S. Kaiser, S. S. Dhesi, G. D. Gu, J. P. Hill, and A. Cavalleri, Phys. Rev. B 90, 100503 (2014). 10.1103/PhysRevB.90.100503 CrossrefGoogle Scholar
  • 11 E. Casandruc, D. Nicoletti, S. Rajasekaran, Y. Laplace, V. Khanna, G. D. Gu, J. P. Hill, and A. Cavalleri, Phys. Rev. B 91, 174502 (2015). 10.1103/PhysRevB.91.174502 CrossrefGoogle Scholar
  • 12 A. A. Patel and A. Eberlein, Phys. Rev. B 93, 195139 (2016). 10.1103/PhysRevB.93.195139 CrossrefGoogle Scholar
  • 13 Z. M. Raines, V. Stanev, and V. M. Galitski, Phys. Rev. B 91, 184506 (2015). 10.1103/PhysRevB.91.184506 CrossrefGoogle Scholar
  • 14 M. Först, A. Frano, S. Kaiser, R. Mankowsky, C. R. Hunt, J. J. Turner, G. L. Dakovski, M. P. Minitti, J. Robinson, T. Loew, M. Le Tacon, B. Keimer, J. P. Hill, A. Cavalleri, and S. S. Dhesi, Phys. Rev. B 90, 184514 (2014). 10.1103/PhysRevB.90.184514 CrossrefGoogle Scholar
  • 15 M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri, Nat. Phys. 7, 854 (2011). 10.1038/nphys2055 CrossrefGoogle Scholar
  • 16 R. Mankowsky, A. Subedi, M. Forst, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, and A. Cavalleri, Nature 516, 71 (2014). 10.1038/nature13875 CrossrefGoogle Scholar
  • 17 A. Subedi, A. Cavalleri, and A. Georges, Phys. Rev. B 89, 220301 (2014). 10.1103/PhysRevB.89.220301 CrossrefGoogle Scholar
  • 18 M. A. Sentef, A. F. Kemper, A. Georges, and C. Kollath, Phys. Rev. B 93, 144506 (2016). 10.1103/PhysRevB.93.144506 CrossrefGoogle Scholar
  • 19 S. J. Denny, S. R. Clark, Y. Laplace, A. Cavalleri, and D. Jaksch, Phys. Rev. Lett. 114, 137001 (2015). 10.1103/PhysRevLett.114.137001 CrossrefGoogle Scholar
  • 20 M. Knap, M. Babadi, G. Refael, I. Martin, and E. Demler, Phys. Rev. B 94, 214504 (2016). 10.1103/PhysRevB.94.214504 CrossrefGoogle Scholar
  • 21 M. Babadi, M. Knap, I. Martin, G. Refael, and E. Demler, Phys. Rev. B 96, 014512 (2017). 10.1103/PhysRevB.96.014512 CrossrefGoogle Scholar
  • 22 Y. Murakami, N. Tsuji, M. Eckstein, and P. Werner, Phys. Rev. B 96, 045125 (2017). 10.1103/PhysRevB.96.045125 CrossrefGoogle Scholar
  • 23 D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Nat. Phys. 13, 479 (2017). 10.1038/nphys4024 CrossrefGoogle Scholar
  • 24 M. A. Sentef, Phys. Rev. B 95, 205111 (2017). 10.1103/PhysRevB.95.205111 CrossrefGoogle Scholar
  • 25 E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz, Phys. Rev. B 95, 024304 (2017). 10.1103/PhysRevB.95.024304 CrossrefGoogle Scholar
  • 26 S. Kaiser, S. R. Clark, D. Nicoletti, G. Cotugno, R. I. Tobey, N. Dean, S. Lupi, H. Okamoto, T. Hasegawa, D. Jaksch, and A. Cavalleri, Sci. Rep. 4, 3823 (2014). 10.1038/srep03823 CrossrefGoogle Scholar
  • 27 R. Singla, G. Cotugno, S. Kaiser, M. Först, M. Mitrano, H. Y. Liu, A. Cartella, C. Manzoni, H. Okamoto, T. Hasegawa, S. R. Clark, D. Jaksch, and A. Cavalleri, Phys. Rev. Lett. 115, 187401 (2015). 10.1103/PhysRevLett.115.187401 CrossrefGoogle Scholar
  • 28 M. Kim, Y. Nomura, M. Ferrero, P. Seth, O. Parcollet, and A. Georges, Phys. Rev. B 94, 155152 (2016). 10.1103/PhysRevB.94.155152 CrossrefGoogle Scholar
  • 29 G. Mazza and A. Georges, Phys. Rev. B 96, 064515 (2017). 10.1103/PhysRevB.96.064515 CrossrefGoogle Scholar
  • 30 J. Sólyom, Adv. Phys. 28, 201 (1979). 10.1080/00018737900101375 CrossrefGoogle Scholar
  • 31 J. Voit, Phys. Rev. B 45, 4027 (1992). 10.1103/PhysRevB.45.4027 CrossrefGoogle Scholar
  • 32 J. Voit, Rep. Prog. Phys. 58, 977 (1995). 10.1088/0034-4885/58/9/002 CrossrefGoogle Scholar
  • 33 S. Paeckel, B. Fauseweh, T. Köhler, S. Manmana, and D. Manske, to be published. Google Scholar
  • 34 H. Lu, S. Sota, H. Matsueda, J. Bonča, and T. Tohyama, Phys. Rev. Lett. 109, 197401 (2012). 10.1103/PhysRevLett.109.197401 CrossrefGoogle Scholar
  • 35 M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B 81, 115131 (2010). 10.1103/PhysRevB.81.115131 CrossrefGoogle Scholar
  • 36 C. Shao, T. Tohyama, H.-G. Luo, and H. Lu, Phys. Rev. B 93, 195144 (2016). 10.1103/PhysRevB.93.195144 CrossrefGoogle Scholar
  • 37 Z. Lenarčič, D. Golež, J. Bonča, and P. Prelovšek, Phys. Rev. B 89, 125123 (2014). 10.1103/PhysRevB.89.125123 CrossrefGoogle Scholar
  • 38 (Supplemental Material) The details to the temporal dynamics of ωΔσ2 is provided online. Google Scholar
  • 39 (Supplemental Material) The details of the dynamics of the low-energy peak at ω = 0 is provided online. Google Scholar
  • 40 (Supplemental Material) The details to the excitation spectrum and correlation functions is provided online. Google Scholar
  • 41 (Supplemental Material) Real part of the optical conductivity is provided online. Google Scholar
  • 42 (Supplemental Material) The details to the double occupancy function is provided online. Google Scholar
  • 43 J. K. Freericks, O. P. Matveev, W. Shen, A. M. Shvaika, and T. P. Devereaux, Phys. Scr. 92, 034007 (2017). 10.1088/1402-4896/aa5b6c CrossrefGoogle Scholar