- Full text:
- PDF (eReader) / PDF (Download) (2045 kB)
Using a nonequilibrium implementation of the Lanczos-based exact diagonalisation technique we study the possibility of the light-induced superconducting phase coherence in a solid state system after an ultrafast optical excitation. In particular, we investigate the buildup of superconducting correlations by calculating an exact time-dependent wave function reflecting the properties of the system in non-equilibrium and the corresponding transient response functions. Within our picture we identify a possible transient Meissner effect after dynamical quenching of the non-superconducting wavefunction and extract a characteristic superfluid density that we compare to experimental data. Finally, we find that the stability of the induced superconducting state depends crucially on the nature of the excitation quench: namely, a pure interaction quench induces a long-lived superconducting state, whereas a phase quench leads to a short-lived transient superconductor.
References
- 1 D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, Science 331, 189 (2011). 10.1126/science.1197294 Crossref, Google Scholar
- 2 C. R. Hunt, D. Nicoletti, S. Kaiser, T. Takayama, H. Takagi, and A. Cavalleri, Phys. Rev. B 91, 020505 (2015). 10.1103/PhysRevB.91.020505 Crossref, Google Scholar
- 3 S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu, M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri, Phys. Rev. B 89, 184516 (2014). 10.1103/PhysRevB.89.184516 Crossref, Google Scholar
- 4 W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri, Nat. Mater. 13, 705 (2014). 10.1038/nmat3963 Crossref, Google Scholar
- 5 C. R. Hunt, D. Nicoletti, S. Kaiser, D. Pröpper, T. Loew, J. Porras, B. Keimer, and A. Cavalleri, Phys. Rev. B 94, 224303 (2016). 10.1103/PhysRevB.94.224303 Crossref, Google Scholar
- 6 M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Ricc, S. R. Clark, D. Jaksch, and A. Cavalleri, Nature 530, 461 (2016). 10.1038/nature16522 Crossref, Google Scholar
- 7 S. Kaiser, Phys. Scr. 92, 103001 (2017). 10.1088/1402-4896/aa8201 Crossref, Google Scholar
- 8 A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, Phys. Rev. Lett. 105, 067001 (2010). 10.1103/PhysRevLett.105.067001 Crossref, Google Scholar
- 9 S. Dal Conte, C. Giannetti, G. Coslovich, F. Cilento, D. Bossini, T. Abebaw, F. Banfi, G. Ferrini, H. Eisaki, M. Greven, A. Damascelli, D. van der Marel, and F. Parmigiani, Science 335, 1600 (2012). 10.1126/science.1216765 Crossref, Google Scholar
- 10 D. Nicoletti, E. Casandruc, Y. Laplace, V. Khanna, C. R. Hunt, S. Kaiser, S. S. Dhesi, G. D. Gu, J. P. Hill, and A. Cavalleri, Phys. Rev. B 90, 100503 (2014). 10.1103/PhysRevB.90.100503 Crossref, Google Scholar
- 11 E. Casandruc, D. Nicoletti, S. Rajasekaran, Y. Laplace, V. Khanna, G. D. Gu, J. P. Hill, and A. Cavalleri, Phys. Rev. B 91, 174502 (2015). 10.1103/PhysRevB.91.174502 Crossref, Google Scholar
- 12 A. A. Patel and A. Eberlein, Phys. Rev. B 93, 195139 (2016). 10.1103/PhysRevB.93.195139 Crossref, Google Scholar
- 13 Z. M. Raines, V. Stanev, and V. M. Galitski, Phys. Rev. B 91, 184506 (2015). 10.1103/PhysRevB.91.184506 Crossref, Google Scholar
- 14 M. Först, A. Frano, S. Kaiser, R. Mankowsky, C. R. Hunt, J. J. Turner, G. L. Dakovski, M. P. Minitti, J. Robinson, T. Loew, M. Le Tacon, B. Keimer, J. P. Hill, A. Cavalleri, and S. S. Dhesi, Phys. Rev. B 90, 184514 (2014). 10.1103/PhysRevB.90.184514 Crossref, Google Scholar
- 15 M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri, Nat. Phys. 7, 854 (2011). 10.1038/nphys2055 Crossref, Google Scholar
- 16 R. Mankowsky, A. Subedi, M. Forst, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, and A. Cavalleri, Nature 516, 71 (2014). 10.1038/nature13875 Crossref, Google Scholar
- 17 A. Subedi, A. Cavalleri, and A. Georges, Phys. Rev. B 89, 220301 (2014). 10.1103/PhysRevB.89.220301 Crossref, Google Scholar
- 18 M. A. Sentef, A. F. Kemper, A. Georges, and C. Kollath, Phys. Rev. B 93, 144506 (2016). 10.1103/PhysRevB.93.144506 Crossref, Google Scholar
- 19 S. J. Denny, S. R. Clark, Y. Laplace, A. Cavalleri, and D. Jaksch, Phys. Rev. Lett. 114, 137001 (2015). 10.1103/PhysRevLett.114.137001 Crossref, Google Scholar
- 20 M. Knap, M. Babadi, G. Refael, I. Martin, and E. Demler, Phys. Rev. B 94, 214504 (2016). 10.1103/PhysRevB.94.214504 Crossref, Google Scholar
- 21 M. Babadi, M. Knap, I. Martin, G. Refael, and E. Demler, Phys. Rev. B 96, 014512 (2017). 10.1103/PhysRevB.96.014512 Crossref, Google Scholar
- 22 Y. Murakami, N. Tsuji, M. Eckstein, and P. Werner, Phys. Rev. B 96, 045125 (2017). 10.1103/PhysRevB.96.045125 Crossref, Google Scholar
- 23 D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Nat. Phys. 13, 479 (2017). 10.1038/nphys4024 Crossref, Google Scholar
- 24 M. A. Sentef, Phys. Rev. B 95, 205111 (2017). 10.1103/PhysRevB.95.205111 Crossref, Google Scholar
- 25 E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz, Phys. Rev. B 95, 024304 (2017). 10.1103/PhysRevB.95.024304 Crossref, Google Scholar
- 26 S. Kaiser, S. R. Clark, D. Nicoletti, G. Cotugno, R. I. Tobey, N. Dean, S. Lupi, H. Okamoto, T. Hasegawa, D. Jaksch, and A. Cavalleri, Sci. Rep. 4, 3823 (2014). 10.1038/srep03823 Crossref, Google Scholar
- 27 R. Singla, G. Cotugno, S. Kaiser, M. Först, M. Mitrano, H. Y. Liu, A. Cartella, C. Manzoni, H. Okamoto, T. Hasegawa, S. R. Clark, D. Jaksch, and A. Cavalleri, Phys. Rev. Lett. 115, 187401 (2015). 10.1103/PhysRevLett.115.187401 Crossref, Google Scholar
- 28 M. Kim, Y. Nomura, M. Ferrero, P. Seth, O. Parcollet, and A. Georges, Phys. Rev. B 94, 155152 (2016). 10.1103/PhysRevB.94.155152 Crossref, Google Scholar
- 29 G. Mazza and A. Georges, Phys. Rev. B 96, 064515 (2017). 10.1103/PhysRevB.96.064515 Crossref, Google Scholar
- 30 J. Sólyom, Adv. Phys. 28, 201 (1979). 10.1080/00018737900101375 Crossref, Google Scholar
- 31 J. Voit, Phys. Rev. B 45, 4027 (1992). 10.1103/PhysRevB.45.4027 Crossref, Google Scholar
- 32 J. Voit, Rep. Prog. Phys. 58, 977 (1995). 10.1088/0034-4885/58/9/002 Crossref, Google Scholar
- 33 S. Paeckel, B. Fauseweh, T. Köhler, S. Manmana, and D. Manske, to be published. Google Scholar
- 34 H. Lu, S. Sota, H. Matsueda, J. Bonča, and T. Tohyama, Phys. Rev. Lett. 109, 197401 (2012). 10.1103/PhysRevLett.109.197401 Crossref, Google Scholar
- 35 M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B 81, 115131 (2010). 10.1103/PhysRevB.81.115131 Crossref, Google Scholar
- 36 C. Shao, T. Tohyama, H.-G. Luo, and H. Lu, Phys. Rev. B 93, 195144 (2016). 10.1103/PhysRevB.93.195144 Crossref, Google Scholar
- 37 Z. Lenarčič, D. Golež, J. Bonča, and P. Prelovšek, Phys. Rev. B 89, 125123 (2014). 10.1103/PhysRevB.89.125123 Crossref, Google Scholar
- 38 (Supplemental Material) The details to the temporal dynamics of ωΔσ2 is provided online. Google Scholar
- 39 (Supplemental Material) The details of the dynamics of the low-energy peak at ω = 0 is provided online. Google Scholar
- 40 (Supplemental Material) The details to the excitation spectrum and correlation functions is provided online. Google Scholar
- 41 (Supplemental Material) Real part of the optical conductivity is provided online. Google Scholar
- 42 (Supplemental Material) The details to the double occupancy function is provided online. Google Scholar
- 43 J. K. Freericks, O. P. Matveev, W. Shen, A. M. Shvaika, and T. P. Devereaux, Phys. Scr. 92, 034007 (2017). 10.1088/1402-4896/aa5b6c Crossref, Google Scholar