J. Phys. Soc. Jpn. 88, 054701 (2019) [8 Pages]
FULL PAPERS

First-principles Study of Spin-wave Excitations of 3d Transition Metals with Linear Combination of Pseudo-atomic Orbitals

+ Affiliations
1Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Kampus A Jl. Rawamangun Muka, Jakarta Timur 13220, Indonesia2Nanomaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan

We have employed the generalized Bloch theorem to evaluate the spin stiffness constants of 3d transition metals (bcc-Fe, fcc-Co, and fcc-Ni) within the linear combination of pseudo-atomic orbitals (LCPAO). The spin stiffness constants were obtained by fitting the spin-wave energy curve, which relates to the total energy difference and the spiral vectors. In order to convince the reliable spin stiffness constants, we also provided the convergences of spin stiffness constants in terms of the cutoff radius and the number of orbitals. After observing the specific cutoff radius and the basis orbital, at which the spin stiffness constant converges, we used those two parameters to compute the Curie temperature by using the mean field approximation and the random phase approximation. For the latter approximation, we applied the so-called Debye approximation, which is intended to reduce very significantly many required wavevectors to evaluate the Curie temperature. We claimed that our results are in good agreement with both other calculations and experiments.

©2019 The Physical Society of Japan

References

  • 1 M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B 64, 174402 (2001). 10.1103/PhysRevB.64.174402 CrossrefGoogle Scholar
  • 2 A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter, J. Phys. F 13, 979 (1983). 10.1088/0305-4608/13/5/012 CrossrefGoogle Scholar
  • 3 A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987). 10.1016/0304-8853(87)90721-9 CrossrefGoogle Scholar
  • 4 R. F. Sabiryanov, S. K. Bose, and O. N. Mryasov, Phys. Rev. B 51, 8958 (1995). 10.1103/PhysRevB.51.8958 CrossrefGoogle Scholar
  • 5 J. B. Staunton and B. L. Gyorffy, Phys. Rev. Lett. 69, 371 (1992). 10.1103/PhysRevLett.69.371 CrossrefGoogle Scholar
  • 6 M. Uhl and J. Kübler, Phys. Rev. Lett. 77, 334 (1996). 10.1103/PhysRevLett.77.334 CrossrefGoogle Scholar
  • 7 S. V. Halilov, A. Y. Perlov, P. M. Oppeneer, and H. Eschrig, Europhys. Lett. 39, 91 (1997). 10.1209/epl/i1997-00319-x CrossrefGoogle Scholar
  • 8 N. M. Rosengaard and B. Johansson, Phys. Rev. B 55, 14975 (1997). 10.1103/PhysRevB.55.14975 CrossrefGoogle Scholar
  • 9 S. V. Halilov, H. Eschrig, A. Y. Perlov, and P. M. Oppeneer, Phys. Rev. B 58, 293 (1998). 10.1103/PhysRevB.58.293 CrossrefGoogle Scholar
  • 10 S. Shallcross, A. E. Kissavos, V. Meded, and A. V. Ruban, Phys. Rev. B 72, 104437 (2005). 10.1103/PhysRevB.72.104437 CrossrefGoogle Scholar
  • 11 J. Kübler, Theory of Itinerant Electron Magnetism (Oxford University Press, Oxford, U.K., 2009). Google Scholar
  • 12 T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113 CrossrefGoogle Scholar
  • 13 T. Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 CrossrefGoogle Scholar
  • 14 H. Yoon, T. J. Kim, J. H. Sim, S. W. Jang, T. Ozaki, and M. J. Han, Phys. Rev. B 97, 125132 (2018). 10.1103/PhysRevB.97.125132 CrossrefGoogle Scholar
  • 15 T. Ozaki, H. Kino, J. Yu, M. J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, T. Ohwaki, H. Weng, and K. Terakura, Open source package for Material eXplorer [http://www.openmx-square.org]. Google Scholar
  • 16 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993 CrossrefGoogle Scholar
  • 17 T. B. Prayitno and F. Ishii, J. Phys. Soc. Jpn. 87, 114709 (2018). 10.7566/JPSJ.87.114709 LinkGoogle Scholar
  • 18 V. M. García-Suárez, C. M. Newman, C. J. Lambert, J. M. Pruneda, and J. Ferrer, J. Phys.: Condens. Matter 16, 5453 (2004). 10.1088/0953-8984/16/30/008 CrossrefGoogle Scholar
  • 19 V. M. García-Suárez, C. M. Newman, C. J. Lambert, J. M. Pruneda, and J. Ferrer, Eur. Phys. J. B 40, 371 (2004). 10.1140/epjb/e2004-00265-y CrossrefGoogle Scholar
  • 20 E. Artacho, J. M. Cela, J. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, D. Sánchez-Portal, and J. M. Soler, SIESTA code [https://departments.icmab.es/leem/siesta]. Google Scholar
  • 21 L. M. Sandratskii, Adv. Phys. 47, 91 (1998). 10.1080/000187398243573 CrossrefGoogle Scholar
  • 22 R. Gebauer and S. Baroni, Phys. Rev. B 61, R6459(R) (2000). 10.1103/PhysRevB.61.R6459 CrossrefGoogle Scholar
  • 23 Ph. Kurz, F. Förster, L. Nordström, G. Bihlmayer, and S. Blügel, Phys. Rev. B 69, 024415 (2004). 10.1103/PhysRevB.69.024415 CrossrefGoogle Scholar
  • 24 E. Şaşıoğlu, L. M. Sandratskii, P. Bruno, and I. Galanakis, Phys. Rev. B 72, 184415 (2005). 10.1103/PhysRevB.72.184415 CrossrefGoogle Scholar
  • 25 A. Jacobsson, B. Sanyal, M. Ležaić, and S. Blügel, Phys. Rev. B 88, 134427 (2013). 10.1103/PhysRevB.88.134427 CrossrefGoogle Scholar
  • 26 L. M. Sandratskii and P. Bruno, Phys. Rev. B 66, 134435 (2002). 10.1103/PhysRevB.66.134435 CrossrefGoogle Scholar
  • 27 E. Şaşioğlu, L. M. Sandratskii, and P. Bruno, J. Magn. Magn. Mater. 290–291, 385 (2005). 10.1016/j.jmmm.2004.11.267 CrossrefGoogle Scholar
  • 28 L. M. Sandratskii, E. Şaşioğlu, and P. Bruno, Phys. Rev. B 73, 014430 (2006). 10.1103/PhysRevB.73.014430 CrossrefGoogle Scholar
  • 29 L. M. Sandratskii and E. Şaşioğlu, Phys. Rev. B 74, 214422 (2006). 10.1103/PhysRevB.74.214422 CrossrefGoogle Scholar
  • 30 F. Essenberger, S. Sharma, J. K. Dewhurst, C. Bersier, F. Cricchio, L. Nordström, and E. K. U. Gross, Phys. Rev. B 84, 174425 (2011). 10.1103/PhysRevB.84.174425 CrossrefGoogle Scholar
  • 31 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980). 10.1103/PhysRevLett.45.566 CrossrefGoogle Scholar
  • 32 M. W. Stringfellow, J. Phys. C 1, 950 (1968). 10.1088/0022-3719/1/4/315 CrossrefGoogle Scholar
  • 33 J. W. Lynn, Phys. Rev. B 11, 2624 (1975). 10.1103/PhysRevB.11.2624 CrossrefGoogle Scholar
  • 34 R. Pauthenet, J. Appl. Phys. 53, 8187 (1982). 10.1063/1.330287 CrossrefGoogle Scholar
  • 35 C. K. Loong, J. M. Carpenter, J. W. Lynn, R. A. Robinson, and H. A. Mook, J. Appl. Phys. 55, 1895 (1984). 10.1063/1.333511 CrossrefGoogle Scholar
  • 36 G. Shirane, V. J. Minkiewicz, and R. Nathans, J. Appl. Phys. 39, 383 (1968). 10.1063/1.2163453 CrossrefGoogle Scholar
  • 37 P. W. Mitchell and D. McK. Paul, Phys. Rev. B 32, 3272 (1985). 10.1103/PhysRevB.32.3272 CrossrefGoogle Scholar
  • 38 H. A. Mook, J. W. Lynn, and M. R. Nicklow, Phys. Rev. Lett. 30, 556 (1973). 10.1103/PhysRevLett.30.556 CrossrefGoogle Scholar
  • 39 J. Enkovaara, A. Ayuela, J. Jalkanen, L. Nordström, and R. M. Nieminen, Phys. Rev. B 67, 054417 (2003). 10.1103/PhysRevB.67.054417 CrossrefGoogle Scholar
  • 40 M. Ležaić, P. Mavropoulos, G. Bihlmayer, and S. Blügel, Phys. Rev. B 88, 134403 (2013).10.1103/PhysRevB.88.134403 For the details, see (M. Ležaíc, Dr. Thesis, T. H. Aachen, Aachen (2005)). CrossrefGoogle Scholar