- Full text:
- PDF (eReader) / PDF (Download) (1217 kB)
We investigated the electronic structure of a delafossite oxide CuAlO2 in comparison with CuCrO2, using vacuum ultraviolet (VUV) and hard x-ray (HX) photoemission spectroscopy (PES) and band structure calculations within the local-density approximation +U scheme. Cu 3p–3d resonant PES and Cu 2p core-level HX-PES give concrete evidence that the Cu valence in CuAlO2 is monovalent, which makes a sharp contrast to CuCrO2 that showed contradictory results depending upon probing methods [Yokobori et al., Phys. Rev. B 87, 195124 (2013)]. We further noticed weak but detectable satellite structures due to Cu2+ state in the Cu 2p HX-PES spectrum of CuCrO2, surprisingly, without an observable main peak due to the Cu2+ state. Comparisons between the valence-band HX-PES spectra and the band structure calculations revealed a significant amount of the Cu 4s and Al 3s/Cr 4s states in the valence band. The above results can reasonably be explained by the Cu 3d, 4s–Cr 3d charge transfer model that we previously proposed in the above paper, thereby demonstrating the critical role of empty 3d orbitals in the electronic structure of the copper delafossite oxides.
References
- 1 R. Daou, R. Fresard, V. Eyert, S. Hebert, and A. Maignan, Sci. Technol. Adv. Mater. 18, 919 (2017). 10.1080/14686996.2017.1393633 Crossref, Google Scholar
- 2 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389, 939 (1997). 10.1038/40087 Crossref, Google Scholar
- 3 T. Okuda, N. Jufuku, S. Hidaka, and N. Terada, Phys. Rev. B 72, 144403 (2005). 10.1103/PhysRevB.72.144403 Crossref, Google Scholar
- 4 T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73, 220401(R) (2006). 10.1103/PhysRevB.73.220401 Crossref, Google Scholar
- 5 S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008). 10.1103/PhysRevLett.101.067204 Crossref, Google Scholar
- 6 Y. Bessekhouad, M. Trari, and J. P. Doumerc, Int. J. Hydrogen Energy 28, 43 (2003). 10.1016/S0360-3199(02)00023-X Crossref, Google Scholar
- 7 D. O. Scanlon, A. Walsh, B. J. Morgan, G. W. Watson, D. J. Payne, and R. G. Egdell, Phys. Rev. B 79, 035101 (2009). 10.1103/PhysRevB.79.035101 Crossref, Google Scholar
- 8 T. Arnold, D. J. Payne, A. Bourlange, J. P. Hu, R. G. Egdell, L. F. J. Piper, L. Colakerol, A. De Masi, P.-A. Glans, T. Learmonth, K. E. Smith, J. Guo, D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson, Phys. Rev. B 79, 075102 (2009). 10.1103/PhysRevB.79.075102 Crossref, Google Scholar
- 9 H. Hiraga, T. Makino, T. Fukumura, H. Weng, and M. Kawasaki, Phys. Rev. B 84, 041411(R) (2011). 10.1103/PhysRevB.84.041411 Crossref, Google Scholar
- 10 A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert, M. Poienar, and D. Pelloquin, Solid State Commun. 149, 962 (2009). 10.1016/j.ssc.2009.02.026 Crossref, Google Scholar
- 11 T. Yokobori, M. Okawa, K. Konishi, R. Takei, K. Katayama, S. Oozono, T. Shinmura, T. Okuda, H. Wadati, E. Sakai, K. Ono, H. Kumigashira, M. Oshima, T. Sugiyama, E. Ikenaga, N. Hamada, and T. Saitoh, Phys. Rev. B 87, 195124 (2013). 10.1103/PhysRevB.87.195124 Crossref, Google Scholar
- 12 H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, J. Appl. Phys. 88, 4159 (2000). 10.1063/1.1308103 Crossref, Google Scholar
- 13 J. Robertson, P. W. Peacock, M. D. Towler, and R. Needs, Thin Solid Films 411, 96 (2002). 10.1016/S0040-6090(02)00195-5 Crossref, Google Scholar
- 14 T. Koyanagi, H. Harima, A. Yanase, and H. Katayama-Yoshida, J. Phys. Chem. Solids 64, 1443 (2003). 10.1016/S0022-3697(03)00078-7 Crossref, Google Scholar
- 15 B. Falabretti and J. Robertson, J. Appl. Phys. 102, 123703 (2007). 10.1063/1.2822274 Crossref, Google Scholar
- 16 R. Gillen and J. Robertson, Phys. Rev. B 84, 035125 (2011). 10.1103/PhysRevB.84.035125 Crossref, Google Scholar
- 17 A. Nakanishi and H. Katayama-Yoshida, Solid State Commun. 152, 24 (2012). 10.1016/j.ssc.2011.10.017 Crossref, Google Scholar
- 18 Y. Xu, Z. M. Ao, and D. W. Yuan, Phys. Lett. A 376, 2613 (2012). 10.1016/j.physleta.2012.07.009 Crossref, Google Scholar
- 19 K. Mori, H. Sakakibara, H. Usui, and K. Kuroki, Phys. Rev. B 88, 075141 (2013). 10.1103/PhysRevB.88.075141 Crossref, Google Scholar
- 20 A. Thatribud and T. Pengpan, Phys. Rev. B 90, 115150 (2014). 10.1103/PhysRevB.90.115150 Crossref, Google Scholar
- 21 X. Wang, W. Meng, and Y. Yan, J. Appl. Phys. 122, 085104 (2017). 10.1063/1.4991913 Crossref, Google Scholar
- 22 R. Liu, Y. Li, B. Yao, Z. Ding, Y. Jiang, L. Meng, R. Deng, L. Zhang, Z. Zhang, H. Zhao, and L. Liu, ACS Appl. Mater. Interfaces 9, 12608 (2017). 10.1021/acsami.7b01354 Crossref, Google Scholar
- 23 D. J. Aston, D. J. Payne, A. J. H. Green, R. G. Egdell, D. S. L. Law, J. Guo, P. A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 72, 195115 (2005). 10.1103/PhysRevB.72.195115 Crossref, Google Scholar
- 24 M. R. Thuler, R. L. Benbow, and Z. Hurych, Phys. Rev. B 26, 669 (1982). 10.1103/PhysRevB.26.669 Crossref, Google Scholar
- 25 J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B 42, 2268 (1990). 10.1103/PhysRevB.42.2268 Crossref, Google Scholar
- 26 Z.-X. Shen, R. S. List, D. S. Dessau, F. Parmigiani, A. J. Arko, R. Bartlett, B. O. Wells, I. Lindau, and W. E. Spicer, Phys. Rev. B 42, 8081 (1990). 10.1103/PhysRevB.42.8081 Crossref, Google Scholar
- 27 O. K. Andersen, Phys. Rev. B 12, 3060 (1975). 10.1103/PhysRevB.12.3060 Crossref, Google Scholar
- 28 T. Takeda and J. Kubler, J. Phys. F 9, 661 (1979). 10.1088/0305-4608/9/4/013 Crossref, Google Scholar
- 29 P. Hohenberg and W. W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864 Crossref, Google Scholar
- 30 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133 Crossref, Google Scholar
- 31 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980). 10.1139/p80-159 Crossref, Google Scholar
- 32 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). 10.1103/PhysRevB.44.943 Crossref, Google Scholar
- 33 I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B 53, 7158 (1996). 10.1103/PhysRevB.53.7158 Crossref, Google Scholar
- 34 V. I. Anisimov, F. Aryasetiawan, and A. I. Linchtenstein, J. Phys.: Condens. Matter 9, 767 (1997). 10.1088/0953-8984/9/4/002 Crossref, Google Scholar
- 35 I. Hamada and H. Katayama-Yoshida, Physica B 376–377, 808 (2006). 10.1016/j.physb.2005.12.202 Crossref, Google Scholar
- 36 R. P. Vasquez, Surf. Sci. Spectra 5, 257 (1998). 10.1116/1.1247881 Crossref, Google Scholar
- 37 J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, and X. Du, Sci. Rep. 4, 7240 (2014). 10.1038/srep07240 Crossref, Google Scholar
- 38 T. K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, and A. Maignan, J. Solid State Chem. 184, 2387 (2011). 10.1016/j.jssc.2011.07.005 Crossref, Google Scholar
- (39) Although Aston et al. interpreted the structure m2 and S2 as the main peak and a satellite structure of the Cu2+ state in CuAlO2, respectively, we believe that both should actually be interpreted as Cu+ satellites.38,36,37) We also note that we did not observe intensity corresponding to S2′ in our CuAlO2 spectrum with improved energy resolution and signal-to-noise ratio compared with Aston et al. Google Scholar
- 40 R. P. Vasquez, Surf. Sci. Spectra 5, 262 (1998). 10.1116/1.1247882 Crossref, Google Scholar
- 41 T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 55, 4257 (1997). 10.1103/PhysRevB.55.4257 Crossref, Google Scholar
- 42 H. Iwasawa, S. Kaneyoshi, K. Kurahashi, T. Saitoh, I. Hase, T. Katsufuji, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. B 80, 125122 (2009). 10.1103/PhysRevB.80.125122 Crossref, Google Scholar
- 43 J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). 10.1016/0092-640X(85)90016-6 Crossref, Google Scholar
- (44) The binding energy (E) dependent Lorentzian FWHM was set to be 0.1(E − EF) (eV). Google Scholar
- 45 A. Sekiyama, J. Yamaguchi, A. Higashiya, M. Obara, H. Sugiyama, M. Y. Kimura, S. Suga, S. Imada, A. Nekrasov, M. Yabashi, K. Tamasaku, and T. Ishikawa, New J. Phys. 12, 043045 (2010). 10.1088/1367-2630/12/4/043045 Crossref, Google Scholar
- 46 J. Weinen, T. Koethe, C. Chang, S. Agrestini, D. Kasinathan, Y. Liao, H. Fujiwara, C. Schüßler-Langeheine, F. Strigari, T. Haupricht, G. Panaccione, F. Offi, G. Monaco, S. Huotari, K.-D. Tsuei, and L. Tjeng, J. Electron Spectrosc. Relat. Phenom. 198, 6 (2015). 10.1016/j.elspec.2014.11.003 Crossref, Google Scholar
- 47 M. B. Trzhaskovskaya, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 77, 97 (2001). 10.1006/adnd.2000.0849 Crossref, Google Scholar
- 48 M. B. Trzhaskovskaya, V. K. Nikulin, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 92, 245 (2006). 10.1016/j.adt.2005.12.002 Crossref, Google Scholar
- (49) The intensity of the two spectra is normalized so that the integrated areas of the two survey scans have the same intensity. The background due to the secondary electrons is subtracted using the Shirley background after the above normalization. Google Scholar
- 50 J. M. Zuo, M. Kim, M. O’Keeffe, and J. C. H. Spence, Nature 401, 49 (1999). 10.1038/43403 Crossref, Google Scholar
- (51) To construct a “fake” Horizontal simulation for CuCrO2 (not shown), the overestimation factors of 120 and 250 for the Cu 4s and the Cr 4s theoretical cross section were also needed. Google Scholar
- 52 R. Nagarajan, A. Draeseke, A. Sleight, and J. Tate, J. Appl. Phys. 89, 8022 (2001). 10.1063/1.1372636 Crossref, Google Scholar