J. Phys. Soc. Jpn. 88, 074701 (2019) [6 Pages]
FULL PAPERS

Electronic Structure of a Delafossite Oxide CuAlO2 in Comparison with CuCrO2

+ Affiliations
1Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan2Department of Electrical and Electronics Engineering, Kagoshima University, Kagoshima 890-0065, Japan3Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan4Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan5Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan6Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan7Center for Spintronics Research Network, Osaka University, Toyonaka, Osaka 560-8531, Japan

We investigated the electronic structure of a delafossite oxide CuAlO2 in comparison with CuCrO2, using vacuum ultraviolet (VUV) and hard x-ray (HX) photoemission spectroscopy (PES) and band structure calculations within the local-density approximation +U scheme. Cu 3p–3d resonant PES and Cu 2p core-level HX-PES give concrete evidence that the Cu valence in CuAlO2 is monovalent, which makes a sharp contrast to CuCrO2 that showed contradictory results depending upon probing methods [Yokobori et al., Phys. Rev. B 87, 195124 (2013)]. We further noticed weak but detectable satellite structures due to Cu2+ state in the Cu 2p HX-PES spectrum of CuCrO2, surprisingly, without an observable main peak due to the Cu2+ state. Comparisons between the valence-band HX-PES spectra and the band structure calculations revealed a significant amount of the Cu 4s and Al 3s/Cr 4s states in the valence band. The above results can reasonably be explained by the Cu 3d, 4s–Cr 3d charge transfer model that we previously proposed in the above paper, thereby demonstrating the critical role of empty 3d orbitals in the electronic structure of the copper delafossite oxides.

©2019 The Physical Society of Japan

References

  • 1 R. Daou, R. Fresard, V. Eyert, S. Hebert, and A. Maignan, Sci. Technol. Adv. Mater. 18, 919 (2017). 10.1080/14686996.2017.1393633 CrossrefGoogle Scholar
  • 2 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389, 939 (1997). 10.1038/40087 CrossrefGoogle Scholar
  • 3 T. Okuda, N. Jufuku, S. Hidaka, and N. Terada, Phys. Rev. B 72, 144403 (2005). 10.1103/PhysRevB.72.144403 CrossrefGoogle Scholar
  • 4 T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73, 220401(R) (2006). 10.1103/PhysRevB.73.220401 CrossrefGoogle Scholar
  • 5 S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008). 10.1103/PhysRevLett.101.067204 CrossrefGoogle Scholar
  • 6 Y. Bessekhouad, M. Trari, and J. P. Doumerc, Int. J. Hydrogen Energy 28, 43 (2003). 10.1016/S0360-3199(02)00023-X CrossrefGoogle Scholar
  • 7 D. O. Scanlon, A. Walsh, B. J. Morgan, G. W. Watson, D. J. Payne, and R. G. Egdell, Phys. Rev. B 79, 035101 (2009). 10.1103/PhysRevB.79.035101 CrossrefGoogle Scholar
  • 8 T. Arnold, D. J. Payne, A. Bourlange, J. P. Hu, R. G. Egdell, L. F. J. Piper, L. Colakerol, A. De Masi, P.-A. Glans, T. Learmonth, K. E. Smith, J. Guo, D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson, Phys. Rev. B 79, 075102 (2009). 10.1103/PhysRevB.79.075102 CrossrefGoogle Scholar
  • 9 H. Hiraga, T. Makino, T. Fukumura, H. Weng, and M. Kawasaki, Phys. Rev. B 84, 041411(R) (2011). 10.1103/PhysRevB.84.041411 CrossrefGoogle Scholar
  • 10 A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert, M. Poienar, and D. Pelloquin, Solid State Commun. 149, 962 (2009). 10.1016/j.ssc.2009.02.026 CrossrefGoogle Scholar
  • 11 T. Yokobori, M. Okawa, K. Konishi, R. Takei, K. Katayama, S. Oozono, T. Shinmura, T. Okuda, H. Wadati, E. Sakai, K. Ono, H. Kumigashira, M. Oshima, T. Sugiyama, E. Ikenaga, N. Hamada, and T. Saitoh, Phys. Rev. B 87, 195124 (2013). 10.1103/PhysRevB.87.195124 CrossrefGoogle Scholar
  • 12 H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, J. Appl. Phys. 88, 4159 (2000). 10.1063/1.1308103 CrossrefGoogle Scholar
  • 13 J. Robertson, P. W. Peacock, M. D. Towler, and R. Needs, Thin Solid Films 411, 96 (2002). 10.1016/S0040-6090(02)00195-5 CrossrefGoogle Scholar
  • 14 T. Koyanagi, H. Harima, A. Yanase, and H. Katayama-Yoshida, J. Phys. Chem. Solids 64, 1443 (2003). 10.1016/S0022-3697(03)00078-7 CrossrefGoogle Scholar
  • 15 B. Falabretti and J. Robertson, J. Appl. Phys. 102, 123703 (2007). 10.1063/1.2822274 CrossrefGoogle Scholar
  • 16 R. Gillen and J. Robertson, Phys. Rev. B 84, 035125 (2011). 10.1103/PhysRevB.84.035125 CrossrefGoogle Scholar
  • 17 A. Nakanishi and H. Katayama-Yoshida, Solid State Commun. 152, 24 (2012). 10.1016/j.ssc.2011.10.017 CrossrefGoogle Scholar
  • 18 Y. Xu, Z. M. Ao, and D. W. Yuan, Phys. Lett. A 376, 2613 (2012). 10.1016/j.physleta.2012.07.009 CrossrefGoogle Scholar
  • 19 K. Mori, H. Sakakibara, H. Usui, and K. Kuroki, Phys. Rev. B 88, 075141 (2013). 10.1103/PhysRevB.88.075141 CrossrefGoogle Scholar
  • 20 A. Thatribud and T. Pengpan, Phys. Rev. B 90, 115150 (2014). 10.1103/PhysRevB.90.115150 CrossrefGoogle Scholar
  • 21 X. Wang, W. Meng, and Y. Yan, J. Appl. Phys. 122, 085104 (2017). 10.1063/1.4991913 CrossrefGoogle Scholar
  • 22 R. Liu, Y. Li, B. Yao, Z. Ding, Y. Jiang, L. Meng, R. Deng, L. Zhang, Z. Zhang, H. Zhao, and L. Liu, ACS Appl. Mater. Interfaces 9, 12608 (2017). 10.1021/acsami.7b01354 CrossrefGoogle Scholar
  • 23 D. J. Aston, D. J. Payne, A. J. H. Green, R. G. Egdell, D. S. L. Law, J. Guo, P. A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 72, 195115 (2005). 10.1103/PhysRevB.72.195115 CrossrefGoogle Scholar
  • 24 M. R. Thuler, R. L. Benbow, and Z. Hurych, Phys. Rev. B 26, 669 (1982). 10.1103/PhysRevB.26.669 CrossrefGoogle Scholar
  • 25 J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B 42, 2268 (1990). 10.1103/PhysRevB.42.2268 CrossrefGoogle Scholar
  • 26 Z.-X. Shen, R. S. List, D. S. Dessau, F. Parmigiani, A. J. Arko, R. Bartlett, B. O. Wells, I. Lindau, and W. E. Spicer, Phys. Rev. B 42, 8081 (1990). 10.1103/PhysRevB.42.8081 CrossrefGoogle Scholar
  • 27 O. K. Andersen, Phys. Rev. B 12, 3060 (1975). 10.1103/PhysRevB.12.3060 CrossrefGoogle Scholar
  • 28 T. Takeda and J. Kubler, J. Phys. F 9, 661 (1979). 10.1088/0305-4608/9/4/013 CrossrefGoogle Scholar
  • 29 P. Hohenberg and W. W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864 CrossrefGoogle Scholar
  • 30 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133 CrossrefGoogle Scholar
  • 31 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980). 10.1139/p80-159 CrossrefGoogle Scholar
  • 32 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). 10.1103/PhysRevB.44.943 CrossrefGoogle Scholar
  • 33 I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B 53, 7158 (1996). 10.1103/PhysRevB.53.7158 CrossrefGoogle Scholar
  • 34 V. I. Anisimov, F. Aryasetiawan, and A. I. Linchtenstein, J. Phys.: Condens. Matter 9, 767 (1997). 10.1088/0953-8984/9/4/002 CrossrefGoogle Scholar
  • 35 I. Hamada and H. Katayama-Yoshida, Physica B 376–377, 808 (2006). 10.1016/j.physb.2005.12.202 CrossrefGoogle Scholar
  • 36 R. P. Vasquez, Surf. Sci. Spectra 5, 257 (1998). 10.1116/1.1247881 CrossrefGoogle Scholar
  • 37 J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, and X. Du, Sci. Rep. 4, 7240 (2014). 10.1038/srep07240 CrossrefGoogle Scholar
  • 38 T. K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, and A. Maignan, J. Solid State Chem. 184, 2387 (2011). 10.1016/j.jssc.2011.07.005 CrossrefGoogle Scholar
  •   (39) Although Aston et al. interpreted the structure m2 and S2 as the main peak and a satellite structure of the Cu2+ state in CuAlO2, respectively, we believe that both should actually be interpreted as Cu+ satellites.38,36,37) We also note that we did not observe intensity corresponding to S2′ in our CuAlO2 spectrum with improved energy resolution and signal-to-noise ratio compared with Aston et al. Google Scholar
  • 40 R. P. Vasquez, Surf. Sci. Spectra 5, 262 (1998). 10.1116/1.1247882 CrossrefGoogle Scholar
  • 41 T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 55, 4257 (1997). 10.1103/PhysRevB.55.4257 CrossrefGoogle Scholar
  • 42 H. Iwasawa, S. Kaneyoshi, K. Kurahashi, T. Saitoh, I. Hase, T. Katsufuji, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. B 80, 125122 (2009). 10.1103/PhysRevB.80.125122 CrossrefGoogle Scholar
  • 43 J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). 10.1016/0092-640X(85)90016-6 CrossrefGoogle Scholar
  •   (44) The binding energy (E) dependent Lorentzian FWHM was set to be 0.1(E − EF) (eV). Google Scholar
  • 45 A. Sekiyama, J. Yamaguchi, A. Higashiya, M. Obara, H. Sugiyama, M. Y. Kimura, S. Suga, S. Imada, A. Nekrasov, M. Yabashi, K. Tamasaku, and T. Ishikawa, New J. Phys. 12, 043045 (2010). 10.1088/1367-2630/12/4/043045 CrossrefGoogle Scholar
  • 46 J. Weinen, T. Koethe, C. Chang, S. Agrestini, D. Kasinathan, Y. Liao, H. Fujiwara, C. Schüßler-Langeheine, F. Strigari, T. Haupricht, G. Panaccione, F. Offi, G. Monaco, S. Huotari, K.-D. Tsuei, and L. Tjeng, J. Electron Spectrosc. Relat. Phenom. 198, 6 (2015). 10.1016/j.elspec.2014.11.003 CrossrefGoogle Scholar
  • 47 M. B. Trzhaskovskaya, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 77, 97 (2001). 10.1006/adnd.2000.0849 CrossrefGoogle Scholar
  • 48 M. B. Trzhaskovskaya, V. K. Nikulin, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 92, 245 (2006). 10.1016/j.adt.2005.12.002 CrossrefGoogle Scholar
  •   (49) The intensity of the two spectra is normalized so that the integrated areas of the two survey scans have the same intensity. The background due to the secondary electrons is subtracted using the Shirley background after the above normalization. Google Scholar
  • 50 J. M. Zuo, M. Kim, M. O’Keeffe, and J. C. H. Spence, Nature 401, 49 (1999). 10.1038/43403 CrossrefGoogle Scholar
  •   (51) To construct a “fake” Horizontal simulation for CuCrO2 (not shown), the overestimation factors of 120 and 250 for the Cu 4s and the Cr 4s theoretical cross section were also needed. Google Scholar
  • 52 R. Nagarajan, A. Draeseke, A. Sleight, and J. Tate, J. Appl. Phys. 89, 8022 (2001). 10.1063/1.1372636 CrossrefGoogle Scholar