J. Phys. Soc. Jpn. 88, 114706 (2019) [8 Pages]
FULL PAPERS

Efficient Algorithm Based on Liechtenstein Method for Computing Exchange Coupling Constants Using Localized Basis Set

+ Affiliations
1Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan2Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan

For large-scale computation of the exchange coupling constants Jij, we reconstruct the Liechtenstein formula for localized orbital representation and simplify the energy integrations by adopting the finite pole approximation of the Fermi function proposed by Ozaki [Phys. Rev. B 75, 035123 (2007)]. We calculate the exchange coupling constant J1NN of the first-nearest-neighbor sites in body-centered-cubic Fe systems of various sizes to estimate the optimal computational parameters that yield appropriate values at the lowest computational cost. It is shown that the number of poles needed for a computational accuracy of 0.05 meV is determined as ∼60, whereas the number of necessary Matsubara poles needed to obtain similar accuracy, which was determined in previous studies, is on the order of 1000. Finally, we show Jij as a function of atomic distance, and compared it with one derived from Korringa–Kohn–Rostoker Green’s function formalism. The distance profile of Jij derived by KKR formalism agrees well with that derived by our study, and this agreement supports the reliability of our newly derived formalism.

©2019 The Physical Society of Japan

References

  • 1 S. Sugimoto, J. Phys. D 44, 064001 (2011). 10.1088/0022-3727/44/6/064001 CrossrefGoogle Scholar
  • 2 K. Hono and H. Sepehri-Amin, Scr. Mater. 67, 530 (2012). 10.1016/j.scriptamat.2012.06.038 CrossrefGoogle Scholar
  • 3 S. Hirosawa, M. Nishino, and S. Miyashita, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 013002 (2017). 10.1088/2043-6254/aa597c CrossrefGoogle Scholar
  • 4 S. Li, B. Gu, H. Bi, Z. Tian, G. Xie, Y. Zhu, and Y. Du, J. Appl. Phys. 92, 7514 (2002). 10.1063/1.1524311 CrossrefGoogle Scholar
  • 5 W. F. Li, T. Ohkubo, and K. Hono, Acta Mater. 57, 1337 (2009). 10.1016/j.actamat.2008.11.019 CrossrefGoogle Scholar
  • 6 T.-H. Kim, S.-R. Lee, S. Namkuma, and T.-S. Jang, J. Alloys Compd. 537, 261 (2012). 10.1016/j.jallcom.2012.05.075 CrossrefGoogle Scholar
  • 7 H. Sepehri-Amin, T. Ohkubo, T. Shima, and K. Hono, Acta Mater. 60, 819 (2012). 10.1016/j.actamat.2011.10.043 CrossrefGoogle Scholar
  • 8 U. M. R. Seelam, L. Liu, T. Akiya, H. Sepehri-Amin, T. Ohkubo, N. Sakuma, M. Yano, A. Kato, and K. Hono, J. Magn. Magn. Mater. 412, 234 (2016). 10.1016/j.jmmm.2016.04.005 CrossrefGoogle Scholar
  • 9 T. T. Sasaki, T. Ohkubo, and K. Hono, Acta Mater. 115, 269 (2016). 10.1016/j.actamat.2016.05.035 CrossrefGoogle Scholar
  • 10 B. Balasubramanian, P. Manchanda, R. Skomski, P. Mukherjee, S. R. Valloppilly, B. Das, G. C. Hadjipanayis, and D. J. Sellmyer, Appl. Phys. Lett. 108, 152406 (2016). 10.1063/1.4945987 CrossrefGoogle Scholar
  • 11 A. Saengdeejing, Y. Chen, M. Matsuura, and S. Sugimoto, J. Chin. Chem. Soc. (Taipei) 63, 506 (2016). 10.1002/jccs.201500393 CrossrefGoogle Scholar
  • 12 Y. Tatetsu, S. Tsuneyuki, and Y. Gohda, Phys. Rev. Appl. 6, 064029 (2016). 10.1103/PhysRevApplied.6.064029 CrossrefGoogle Scholar
  • 13 Z. Torbatian, T. Ozaki, S. Tsuneyuki, and Y. Gohda, Appl. Phys. Lett. 104, 242403 (2014). 10.1063/1.4883840 CrossrefGoogle Scholar
  • 14 N. Umetsu, A. Sakuma, and Y. Toga, Phys. Rev. B 93, 014408 (2016). 10.1103/PhysRevB.93.014408 CrossrefGoogle Scholar
  • 15 H. Akai, Scr. Mater. 154, 300 (2018). 10.1016/j.scriptamat.2018.02.006 CrossrefGoogle Scholar
  • 16 Y. Gohda, Y. Tatetsu, and S. Tsuneyuki, Mater. Trans. 59, 332 (2018). 10.2320/matertrans.M2017258 CrossrefGoogle Scholar
  • 17 C. E. Patrick and J. B. Staunton, Phys. Rev. B 97, 224415 (2018). 10.1103/PhysRevB.97.224415 CrossrefGoogle Scholar
  • 18 Y. Tatetsu, S. Tsuneyuki, and Y. Gohda, Materialia 4, 388 (2018). 10.1016/j.mtla.2018.10.018 CrossrefGoogle Scholar
  • 19 C. E. Patrick, M. Matsumoto, and J. B. Staunton, J. Magn. Magn. Mater. 477, 147 (2019). 10.1016/j.jmmm.2019.01.061 CrossrefGoogle Scholar
  • 20 A. M. Schönhöbel, R. Madugundo, O. Yu. Vekilova, O. Eriksson, H. C. Herper, J. M. Barandiarán, and G. C. Hadjipanayis, J. Alloys Compd. 786, 969 (2019). 10.1016/j.jallcom.2019.01.332 CrossrefGoogle Scholar
  • 21 A. L. Tedstone, C. E. Patrick, S. Kumar, R. S. Edwards, M. R. Lees, G. Balakrishnan, and J. B. Staunton, Phys. Rev. Mater. 3, 034409 (2019). 10.1103/PhysRevMaterials.3.034409 CrossrefGoogle Scholar
  • 22 A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanova, J. Magn. Magn. Mater. 67, 65 (1987). 10.1016/0304-8853(87)90721-9 CrossrefGoogle Scholar
  • 23 M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B 64, 174402 (2001). 10.1103/PhysRevB.64.174402 CrossrefGoogle Scholar
  • 24 I. Turek, J. Kudrnovský, G. Bihlmayer, and S. Blügel, J. Phys.: Condens. Matter 15, 2771 (2003). 10.1088/0953-8984/15/17/327 CrossrefGoogle Scholar
  • 25 V. A. Dinh, K. Sato, and H. Katayama-Yoshida, J. Supercond. Novel Magn. 23, 79 (2009). 10.1007/s10948-009-0569-3 CrossrefGoogle Scholar
  • 26 I. Galanakis and E. Şaşıoǧlu, J. Phys. D 44, 235001 (2011). 10.1088/0022-3727/44/23/235001 CrossrefGoogle Scholar
  • 27 M. Seike, V. An Dinh, K. Sato, and H. Katayama Yoshida, Physica B 407, 2875 (2012). 10.1016/j.physb.2011.08.044 CrossrefGoogle Scholar
  • 28 T. Fukushima, H. Shinya, H. Fujii, K. Sato, H. Katayama-Yoshida, and P. H. Dederichs, J. Phys.: Condens. Matter 27, 015501 (2015). 10.1088/0953-8984/27/1/015501 CrossrefGoogle Scholar
  • 29 X. D. Xu, T. T. Sasaki, J. N. Li, Z. J. Dong, H. Sepehri-Amin, T. H. Kim, T. Ohkubo, T. Schrefl, and K. Hono, Acta Mater. 156, 146 (2018). 10.1016/j.actamat.2018.06.037 CrossrefGoogle Scholar
  • 30 T. Ozaki, Phys. Rev. B 75, 035123 (2007). 10.1103/PhysRevB.75.035123 CrossrefGoogle Scholar
  • 31 T. Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 CrossrefGoogle Scholar
  • 32 Y. O. Kvashnin, O. Grånäs, I. Di Marco, M. I. Katsnelson, A. I. Lichtenstein, and O. Eriksson, Phys. Rev. B 91, 125133 (2015). 10.1103/PhysRevB.91.125133 CrossrefGoogle Scholar
  • 33 H. Shiba, Prog. Theor. Phys. 46, 77 (1971). 10.1143/PTP.46.77 CrossrefGoogle Scholar
  • 34 H. Akai, Physica B+C 86-88, 539 (1977). 10.1016/0378-4363(77)90417-X CrossrefGoogle Scholar
  • 35 H. Akai, J. Phys. Soc. Jpn. 51, 468 (1982). 10.1143/JPSJ.51.468 LinkGoogle Scholar
  • 36 J. Korringa, Physica 13, 392 (1947). 10.1016/0031-8914(47)90013-X CrossrefGoogle Scholar
  • 37 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954). 10.1103/PhysRev.94.1111 CrossrefGoogle Scholar
  • 38 H. Wang, P.-W. Ma, and C. H. Woo, Phys. Rev. B 82, 144304 (2010). 10.1103/PhysRevB.82.144304 CrossrefGoogle Scholar
  • 39 H. Yoon, T. J. Kim, J.-H. Sim, S. W. Jang, T. Ozaki, and M. J. Han, Phys. Rev. B 97, 125132 (2018). 10.1103/PhysRevB.97.125132 CrossrefGoogle Scholar
  • 40 M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 70, 184421 (2004). 10.1103/PhysRevB.70.184421 CrossrefGoogle Scholar
  • 41 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 CrossrefGoogle Scholar
  • 42 I. Morrison, D. M. Bylander, and L. Kleinman, Phys. Rev. B 47, 6728 (1993). 10.1103/PhysRevB.47.6728 CrossrefGoogle Scholar
  • 43 S. Frota-Pessôa, R. B. Muniz, and J. Kudrnovský, Phys. Rev. B 62, 5293 (2000). 10.1103/PhysRevB.62.5293 CrossrefGoogle Scholar