J. Phys. Soc. Jpn. 88, 124603 (2019) [7 Pages]

A New Aspect of the Charged Domain Wall in Hexagonal RMnO3 Systems (R: Y, In)

Takuro Katsufuji
JPSJ News Comments 16,  17 (2019).

+ Affiliations
1Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan2Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan3Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, U.S.A.4RIKEN Center for Emergent Matter Sciences (CEMS), Wako, Saitama 351-0198, Japan5Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

We investigate the profiles of the polarization in the simple “flat” charged domain wall, specified by “head to head” (“tail to tail”) configuration, in the hexagonal RMnO3 systems (R: Y and In). Detailed observations of profiles of the displacements of Y-ions (In-ions) across the above-specified domain walls have been carried out utilizing the HAADF-STEM method with the resolution as high as 20 picometers. The results show qualitatively different features from the conventionally accepted tanh(x) type polarization profile in the domain wall. Taking into account that the non-polar state exists as a (meta)stable one in addition to the two degenerate polar states, the analysis of the obtained experimental results has been carried out based on one-dimensional ϕ6 field theory. The theoretical results have shown satisfactory consistencies with experimental observations. We also recognize that the present problem may be discussed in the framework of “interacting (either attractive or repulsive) soliton pair”. In this context, YMnO3 corresponds to the case where the attractive interaction dominates, resulting in merging of the solitons while InMnO3 to the case where the repulsive interaction dominates, resulting in the completely separated configuration of the two solitons. These pictures provide a new perspective to understand the “charged” domain wall in the materials under consideration.

©2019 The Physical Society of Japan


  • 1 A. K. Tagantsev, E. Courtens, and L. Arzel, Phys. Rev. B 64, 224107 (2001). 10.1103/PhysRevB.64.224107 CrossrefGoogle Scholar
  • 2 A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L.-Q. Chen, and V. Gopalan, Phys. Rev. B 85, 094107 (2012). 10.1103/PhysRevB.85.094107 CrossrefGoogle Scholar
  • 3 X.-K. Wei, A. K. Tagantsev, A. Kvasov, K. Roleder, C.-L. Jia, and N. Setter, Nat. Commun. 5, 3031 (2014). 10.1038/ncomms4031 CrossrefGoogle Scholar
  • 4 W. Wu, Y. Horibe, N. Lee, S.-W. Cheong, and J. R. Guest, Phys. Rev. Lett. 108, 077203 (2012). 10.1103/PhysRevLett.108.077203 CrossrefGoogle Scholar
  • 5 P. Maksymovych, A. N. Morozovska, and P. Yu, Nano Lett. 11, 1906 (2011). 10.1021/nl104363x CrossrefGoogle Scholar
  • 6 J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010). 10.1103/PhysRevLett.105.197603 CrossrefGoogle Scholar
  • 7 S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 63, 125411 (2001). 10.1103/PhysRevB.63.125411 CrossrefGoogle Scholar
  • 8 T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, Nat. Commun. 3, 748 (2012). 10.1038/ncomms1751 CrossrefGoogle Scholar
  • 9 A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979). Google Scholar
  • 10 E. Hassanpour, M. C. Weber, A. Bortis, Y. Tokunaga, Y. Taguchi, Y. Tokura, A. Cano, Th. Lottermoser, and M. Fiebig, arXiv:1908.06876. Google Scholar
  • 11 H. Ishizuka, Y. Yamada, and N. Nagaosa, J. Phys. Soc. Jpn. 87, 053601 (2018). 10.7566/JPSJ.87.053601 LinkGoogle Scholar
  • 12 H. L. Yakel and W. C. Koehler, Acta Crystallogr. 16, 957 (1963). 10.1107/S0365110X63002589 CrossrefGoogle Scholar
  • 13 T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B 66, 134434 (2002). 10.1103/PhysRevB.66.134434 CrossrefGoogle Scholar
  • 14 C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 100103 (2005). 10.1103/PhysRevB.72.100103 CrossrefGoogle Scholar
  • 15 Y. Geng, H. Das, A. L. Wysocki, Z. Xang, S.-W. Cheong, M. Mostovoy, C. J. Fennie, and W. Wu, Nat. Mater. 13, 163 (2014). 10.1038/nmat3813 CrossrefGoogle Scholar
  • 16 B. Mettout, P. Toledano, M. Lilienblum, and M. Fiebig, Phys. Rev. B 89, 024103 (2014). 10.1103/PhysRevB.89.024103 CrossrefGoogle Scholar
  • 17 F. Xue, X. Wang, I. socolenco, Y. Gu, L.-Q. Chen, and S.-W. Cheong, Sci. Rep. 5, 17057 (2015). 10.1038/srep17057 CrossrefGoogle Scholar
  • 18 K. L. Yang, Y. Zhang, S. H. Zheng, L. Lin, Z. B. Yan, J.-M. Liu, and S.-W. Cheong, Phys. Rev. B 95, 024114 (2017). 10.1103/PhysRevB.95.024114 CrossrefGoogle Scholar
  • 19 T. Sulka, P. Bednyakov, A. Crasous, and A. Tagantsev, in Topological Structures in Ferroic Materials, ed. J. Seidel (Springer, Switzerland, 2016) p. 103, and references therein. CrossrefGoogle Scholar
  • 20 V. F. Krapivin and E. V. Chenskii, Sov. Phys. Solid State 12, 454 (1970). Google Scholar
  • 21 V. M. Fridkin, Ferroelectric Semiconductors (Springer, New York, 1980). Google Scholar
  • 22 M. Y. Gureev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 83, 184104 (2011). 10.1103/PhysRevB.83.184104 CrossrefGoogle Scholar
  • 23 S. N. Behera and A. Khare, Pramana 15, 245 (1980). 10.1007/BF02847222 CrossrefGoogle Scholar
  • 24 F. T. Huang, X. Wang, Y. S. Oh, K. Kurushima, S. Mori, Y. Horibe, and S.-W. Cheong, Phys. Rev. B 87, 184109 (2013). 10.1103/PhysRevB.87.184109 CrossrefGoogle Scholar
  • 25 F. T. Huang, X. Wang, S. M. Griffin, Y. Kumagai, O. Gindele, M.-W. Chu, Y. Horibe, N. A. Spaldin, and S.-W. Cheong, Phys. Rev. Lett. 113, 267602 (2014). 10.1103/PhysRevLett.113.267602 CrossrefGoogle Scholar
  • 26 T. Matsumoto, R. Ishikawa, T. Tohei, H. Kimura, Q. Yao, H. Zhao, X. Wang, D. Chen, Z. Cheng, N. Shibata, and Y. Ikuhara, Nano Lett. 13, 4594 (2013). 10.1021/nl402158c CrossrefGoogle Scholar
  • 27 S. C. Chae, Y. Horibe, D. Y. Jeong, S. Rodan, N. Lee, and S.-W. Cheong, Proc. Natl. Acad. Sci. U.S.A. 107, 21366 (2010). 10.1073/pnas.1011380107 CrossrefGoogle Scholar
  • 28 S. Artyukhin, K. T. Delaney, N. A. Spaldin, and M. Mostovoy, Nat. Mater. 13, 42 (2014). 10.1038/nmat3786 CrossrefGoogle Scholar
  • 29 M. Mekata, J. Phys. Soc. Jpn. 42, 76 (1977). 10.1143/JPSJ.42.76 LinkGoogle Scholar
  • 30 N. Todoroki and S. Miyashita, J. Phys. Soc. Jpn. 73, 412 (2004). 10.1143/JPSJ.73.412 LinkGoogle Scholar