J. Phys. Soc. Jpn. 89, 014702 (2020) [7 Pages]
FULL PAPERS

Topological Features in a Chiral p-wave Superconductor under Uniaxial Strain

+ Affiliations
1Department of Applied Physics, Okayama University of Science, Okayama 700-0005, Japan2Institut für Theoretische Physik, ETH-Zürich, CH-8093 Zürich, Switzerland

Uniaxial strain effects in the superconducting phase are investigated assuming chiral p-wave pairing for the unconventional superconductor Sr2RuO4. The Fermi surface structure of the γ-band is especially sensitive to this type of strain as it is presumably most important for the superconducting phase and its Fermi surface undergoes a Lifshitz transition. Taking several distinct pairing channels within a lattice model into account, we study the effect of strain on the topological properties of the superconducting phase considering various characteristic quantities such as the thermal Hall conductivity, which gives direct access to the Chern number of the pairing state in the low-temperature limit. While the charge edge current under strain depends on the dominant pairing channel but is essentially insensitive to the Fermi surface topology, we find that the temperature dependence of the thermal Hall conductivity is strongly affected by the Lifshitz transition under strain.

©2020 The Physical Society of Japan

References

  • 1 Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994). 10.1038/372532a0 CrossrefGoogle Scholar
  • 2 K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Nature (London) 396, 658 (1998). 10.1038/25315 CrossrefGoogle Scholar
  • 3 A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003). 10.1103/RevModPhys.75.657 CrossrefGoogle Scholar
  • 4 Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012). 10.1143/JPSJ.81.011009 LinkGoogle Scholar
  • 5 G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature (London) 394, 558 (1998). 10.1038/29038 CrossrefGoogle Scholar
  • 6 J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 97, 167002 (2006). 10.1103/PhysRevLett.97.167002 CrossrefGoogle Scholar
  • 7 A. Pustogow, Y. Luo, A. Chronister, Y. S. Su, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, E. D. Bauer, and S. E. Brown, Nature 574, 72 (2019). 10.1038/s41586-019-1596-2 CrossrefGoogle Scholar
  • 8 K. Ishida, M. Manago, and Y. Maeno, arXiv:1907.12236. Google Scholar
  • 9 T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995). 10.1088/0953-8984/7/47/002 CrossrefGoogle Scholar
  • 10 C. N. Veenstra, Z.-H. Zhu, B. Ludbrook, M. Capsoni, G. Levy, A. Nicolaou, J. A. Rosen, R. Comin, S. Kittaka, Y. Maeno, I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett. 110, 097004 (2013). 10.1103/PhysRevLett.110.097004 CrossrefGoogle Scholar
  • 11 Y. Imai, K. Wakabayashi, and M. Sigrist, J. Phys. Soc. Jpn. 83, 124712 (2014). 10.7566/JPSJ.83.124712 LinkGoogle Scholar
  • 12 S. Kittaka, H. Taniguchi, S. Yonezawa, H. Yaguchi, and Y. Maeno, Phys. Rev. B 81, 180510(R) (2010). 10.1103/PhysRevB.81.180510 CrossrefGoogle Scholar
  • 13 C. W. Hicks, D. O. Brodsky, E. A. Yelland, A. S. Gibbs, J. A. N. Bruin, M. E. Barber, S. D. Edkins, K. Nishimura, S. Yonezawa, Y. Maeno, and A. P. Mackenzie, Science 344, 283 (2014). 10.1126/science.1248292 CrossrefGoogle Scholar
  • 14 H. Taniguchi, K. Nishimura, S. K. Goh, S. Yonezawa, and Y. Maeno, J. Phys. Soc. Jpn. 84, 014707 (2015). 10.7566/JPSJ.84.014707 LinkGoogle Scholar
  • 15 B. Burganov, C. Adamo, A. Mulder, M. Uchida, P. D. C. King, J. W. Harter, D. E. Shai, A. S. Gibbs, A. P. Mackenzie, R. Uecker, M. Bruetzam, M. R. Beasley, C. J. Fennie, D. G. Schlom, and K. M. Shen, Phys. Rev. Lett. 116, 197003 (2016). 10.1103/PhysRevLett.116.197003 CrossrefGoogle Scholar
  • 16 M. E. Barber, A. S. Gibbs, Y. Maeno, A. P. Mackenzie, and C. W. Hicks, Phys. Rev. Lett. 120, 076602 (2018). 10.1103/PhysRevLett.120.076602 CrossrefGoogle Scholar
  • 17 Y. C. Liu, F. C. Zhang, T. M. Rice, and Q. H. Wang, npj Quantum Mater. 2, 12 (2017). 10.1038/s41535-017-0014-y CrossrefGoogle Scholar
  • 18 A. Steppke, L. Zhao, M. E. Barber, T. Scaffidi, F. Jerzembeck, H. Rosner, A. S. Gibbs, Y. Maeno, S. H. Simon, A. P. Mackenzie, and C. W. Hicks, Science 355, eaaf9398 (2017). 10.1126/science.aaf9398 CrossrefGoogle Scholar
  • 19 Q.-H. Wang, C. Platt, Y. Yang, C. Honerkamp, F. C. Zhang, W. Hanke, T. M. Rice, and R. Thomale, Europhys. Lett. 104, 17013 (2013). 10.1209/0295-5075/104/17013 CrossrefGoogle Scholar
  • 20 T. Scaffidi and S. H. Simon, Phys. Rev. Lett. 115, 087003 (2015). 10.1103/PhysRevLett.115.087003 CrossrefGoogle Scholar
  • 21 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502 CrossrefGoogle Scholar
  • 22 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017). 10.1088/1361-648X/aa8f79 CrossrefGoogle Scholar
  • 23 Q. Huang, J. L. Soubeyroux, O. Chmaissem, I. N. Sora, A. Santoro, R. J. Cava, J. J. Krajewski, and J. W. F. Peck, J. Solid State Chem. 112, 355 (1994). 10.1006/jssc.1994.1316 CrossrefGoogle Scholar
  • 24 J. L. Martínez, C. Prieto, J. Rodríguez-Carvajal, A. de Andrés, M. Vallet-Regí, and J. M. González-Calbet, J. Magn. Magn. Mater. 140–144, 179 (1995). 10.1016/0304-8853(94)01245-8 CrossrefGoogle Scholar
  • 25 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2K, An Augmented-Plane-Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Universität Wien, Vienna, 2001). Google Scholar
  • 26 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 CrossrefGoogle Scholar
  • 27 K. K. Ng and M. Sigrist, Europhys. Lett. 49, 473 (2000). 10.1209/epl/i2000-00173-x CrossrefGoogle Scholar
  • 28 Y. Yanase and M. Ogata, J. Phys. Soc. Jpn. 72, 673 (2003). 10.1143/JPSJ.72.673 LinkGoogle Scholar
  • 29 T. Scaffidi, J. C. Romers, and S. H. Simon, Phys. Rev. B 89, 220510 (2014). 10.1103/PhysRevB.89.220510 CrossrefGoogle Scholar
  • 30 M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999). 10.1143/JPSJ.68.994 LinkGoogle Scholar
  • 31 X. G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992). 10.1142/S0217979292000840 CrossrefGoogle Scholar
  • 32 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993). 10.1103/PhysRevLett.71.3697 CrossrefGoogle Scholar
  • 33 A. Vishwanath, Phys. Rev. Lett. 87, 217004 (2001). 10.1103/PhysRevLett.87.217004 CrossrefGoogle Scholar
  • 34 T. Qin, Q. Niu, and J. Shi, Phys. Rev. Lett. 107, 236601 (2011). 10.1103/PhysRevLett.107.236601 CrossrefGoogle Scholar
  • 35 H. Sumiyoshi and S. Fujimoto, J. Phys. Soc. Jpn. 82, 023602 (2013). 10.7566/JPSJ.82.023602 LinkGoogle Scholar
  • 36 Y. Imai, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 93, 024510 (2016). 10.1103/PhysRevB.93.024510 CrossrefGoogle Scholar