J. Phys. Soc. Jpn. 89, 034601 (2020) [5 Pages]
FULL PAPERS

Crystal Structure and Cation Distribution of the X-type Hexaferrite Sr2Co2Fe28O46

+ Affiliations
1Division of Advanced Ceramics, Nagoya Institute of Technology, Nagoya 466-8555, Japan2Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan3J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1106, Japan4Neutron R&D Division, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan

The crystal structure of an X-type hexaferrite Sr2Co2Fe28O46 was investigated by the x-ray and neutron diffraction methods for a single crystal. Sr2Co2Fe28O46 has the crystal structure described as a space group R\(\bar{\text{3}}\)m (Z = 3) and its lattice constants are a = 5.9165(2) Å and c = 84.1395(33) Å at 843 K. Co ions are almost localized in the octahedral site (9d) in the middle of S*S* blocks. In addition, the adjacent octahedral and tetrahedral sites to 9d site contain the significant number of Co2+.

©2020 The Physical Society of Japan

References

  • 1 J. Smit and H. P. J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959). Google Scholar
  • 2 V. V. Pankov, M. Pernet, P. Germi, and P. Mollard, J. Magn. Magn. Mater. 120, 69 (1993). 10.1016/0304-8853(93)91289-J CrossrefGoogle Scholar
  • 3 A. L. Stuijts and H. P. J. Wijn, J. Appl. Phys. 29, 468 (1958). 10.1063/1.1723182 CrossrefGoogle Scholar
  • 4 R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012). 10.1016/j.pmatsci.2012.04.001 CrossrefGoogle Scholar
  • 5 T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005). 10.1103/PhysRevLett.94.137201 CrossrefGoogle Scholar
  • 6 Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010). 10.1103/PhysRevLett.105.257201 CrossrefGoogle Scholar
  • 7 Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Nat. Mater. 9, 797 (2010). 10.1038/nmat2826 CrossrefGoogle Scholar
  • 8 P. B. Braun, Philips Res. Rep. 12, 491 (1957). Google Scholar
  • 9 F. Leccabue, R. Panizzieri, G. Bocelli, G. Calestani, C. Rizzoli, and N. S. Almondovar, J. Magn. Magn. Mater. 68, 365 (1987). 10.1016/0304-8853(87)90015-1 CrossrefGoogle Scholar
  • 10 H. A. Graetsch, J. Chem. Crystallogr. 48, 177 (2018). 10.1007/s10870-018-0726-2 CrossrefGoogle Scholar
  • 11 A. Collomb, B. Lambert-Anderson, J. X. Boucherle, and D. Samaras, Phys. Status Solidi A 96, 385 (1986). 10.1002/pssa.2210960203 CrossrefGoogle Scholar
  • 12 J. Muller and A. Collomb, J. Magn. Magn. Mater. 103, 194 (1992). 10.1016/0304-8853(92)90253-K CrossrefGoogle Scholar
  • 13 W. D. Townes, J. H. Fang, and A. J. Perrotta, Z. Kristallogr. Cryst. Mater. 125, 437 (1967). 10.1524/zkri.1967.125.16.437 CrossrefGoogle Scholar
  • 14 D. Samaras, A. Collomb, S. Hadjivasiliou, C. Achilleos, J. Tsoukalas, J. Pannetier, and J. Rodrigues, J. Magn. Magn. Mater. 79, 193 (1989). 10.1016/0304-8853(89)90098-X CrossrefGoogle Scholar
  • 15 M. Komabuchi, D. Urushihara, Y. Kimata, M. Okabe, T. Asaka, and K. Fukuda, Phys. Rev. B 100, 094406 (2019). 10.1103/PhysRevB.100.094406 CrossrefGoogle Scholar
  • 16 SADABS, Bruker AXS Inc., Madison, Wisconsin, U.S.A. Google Scholar
  • 17 L. Palatinus and G. Chapuis, J. Appl. Crystallogr. 40, 786 (2007). 10.1107/S0021889807029238 CrossrefGoogle Scholar
  • 18 T. Ohhara, R. Kiyanagi, K. Oikawa, K. Kaneko, T. Kawasaki, I. Tamura, A. Nakao, T. Hanashima, K. Munakata, T. Moyoshi, T. Kuroda, H. Kimura, T. Sakakura, C.-H. Lee, M. Takahashi, K. Ohshima, T. Kiyotani, Y. Noda, and M. Arai, J. Appl. Crystallogr. 49, 120 (2016). 10.1107/S1600576715022943 CrossrefGoogle Scholar
  • 19 T. Ohhara, K. Kusaka, T. Hosoya, K. Kurihara, K. Tomoyori, N. Niimura, I. Tanaka, J. Suzuki, T. Nakatani, T. Otomo, S. Matsuoka, K. Tomita, Y. Nishimaki, T. Ajima, and S. Ryufuku, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 195 (2009). 10.1016/j.nima.2008.11.030 CrossrefGoogle Scholar
  • 20 M. Komabuchi, D. Urushihara, Y. Kimata, M. Okabe, T. Asaka, K. Fukuda, K. Nakano, and K. Yamamoto, J. Magn. Magn. Mater. 498, 166115 (2020). 10.1016/j.jmmm.2019.166115 CrossrefGoogle Scholar
  • 21 V. Petříček, M. Dušek, and L. Palatinus, Z. Kristallogr. Cryst. Mater. 229, 345 (2014). 10.1515/zkri-2014-1737 CrossrefGoogle Scholar
  • 22 K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 10.1107/S0021889811038970 CrossrefGoogle Scholar
  • 23 R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). 10.1107/S0567739476001551 CrossrefGoogle Scholar
  • 24 A. Miller, J. Appl. Phys. 30, S24 (1959). 10.1063/1.2185913 CrossrefGoogle Scholar
  • 25 E. W. Gorter, Proc. IEE B 104, 255 (1957). 10.1049/pi-b-1.1957.0042 CrossrefGoogle Scholar
  • 26 S. Dey and R. Valenzuela, J. Appl. Phys. 55, 2340 (1984). 10.1063/1.333656 CrossrefGoogle Scholar
  • 27 A. Tauber, J. S. Megill, and J. R. Shappirio, J. Appl. Phys. 41, 1353 (1970). 10.1063/1.1658939 CrossrefGoogle Scholar
  • 28 B. X. Gu, J. Appl. Phys. 70, 372 (1991). 10.1063/1.350284 CrossrefGoogle Scholar
  • 29 B. X. Gu, J. Appl. Phys. 71, 5103 (1992). 10.1063/1.350613 CrossrefGoogle Scholar
  • 30 K. Kamishima, N. Hosaka, K. Kakizaki, and N. Hiratsuka, J. Appl. Phys. 109, 013904 (2011). 10.1063/1.3527933 CrossrefGoogle Scholar