J. Phys. Soc. Jpn. 89, 044701 (2020) [5 Pages]
FULL PAPERS

Enhancement of Giant Rashba Splitting in BiTeI under Asymmetric Interlayer Interaction

+ Affiliations
1Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea2Department of Physics and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 37673, Korea

We carry out density functional theory calculation to enhance the Rashba spin splitting (RSS) of BiTeI by modifying the interlayer interaction. It is shown that RSS increases as the Te layer approaches to adjacent Bi layer or the I layer recedes from the Bi layer. Our results indicate that the RSS can be sensitively increased by introducing a vacancy on the Te site to make effective Bi–Te distance shorter. It is also found that the difference of Te p orbital character between two spin-split bands increases when the RSS is developed along crystal momentum, which supports asymmetric interlayer interaction in the spin-split bands. Our work suggests that the modification of interlayer interaction is an effective approach in the modeling of the RSS in BiTeI and other layered materials.

©2020 The Physical Society of Japan

References

  • 1 J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Phys. Slovaca 57, 565 (2007). CrossrefGoogle Scholar
  • 2 A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nat. Mater. 14, 871 (2015). 10.1038/nmat4360 CrossrefGoogle Scholar
  • 3 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001). 10.1126/science.1065389 CrossrefGoogle Scholar
  • 4 E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela 2, 162 (1959). Google Scholar
  • 5 Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984). Google Scholar
  • 6 Q. Liu, X. Zhang, H. Jin, K. Lam, J. Im, A. J. Freeman, and A. Zunger, Phys. Rev. B 91, 235204 (2015). 10.1103/PhysRevB.91.235204 CrossrefGoogle Scholar
  • 7 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Nat. Mater. 10, 521 (2011). 10.1038/nmat3051 CrossrefGoogle Scholar
  • 8 S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419 (1996). 10.1103/PhysRevLett.77.3419 CrossrefGoogle Scholar
  • 9 F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B 63, 115415 (2001). 10.1103/PhysRevB.63.115415 CrossrefGoogle Scholar
  • 10 L. Petersen and P. Hedegård, Surf. Sci. 459, 49 (2000). 10.1016/S0039-6028(00)00441-6 CrossrefGoogle Scholar
  • 11 S. R. Park, C. H. Kim, J. Yu, J. H. Han, and C. Kim, Phys. Rev. Lett. 107, 156803 (2011). 10.1103/PhysRevLett.107.156803 CrossrefGoogle Scholar
  • 12 S. R. Park and C. Kim, J. Electron Spectrosc. Relat. Phenom. 201, 6 (2015). 10.1016/j.elspec.2014.12.009 CrossrefGoogle Scholar
  • 13 J. Hong, J.-W. Rhim, C. Kim, S. R. Park, and J. H. Shim, Sci. Rep. 5, 13488 (2015). 10.1038/srep13488 CrossrefGoogle Scholar
  • 14 J. Hong, J.-W. Rhim, I. Song, C. Kim, S. R. Park, and J. H. Shim, J. Phys. Soc. Jpn. 88, 124705 (2019). 10.7566/JPSJ.88.124705 LinkGoogle Scholar
  • 15 V. Sunko, H. Rosner, P. Kushwaha, S. Khim, F. Mazzola, L. Bawden, O. J. Clark, J. M. Riley, D. Kasinathan, M. W. Haverkort, T. K. Kim, M. Hoesch, J. Fujii, I. Vobornik, A. P. Mackenzie, and P. D. C. King, Nature 549, 492 (2017). 10.1038/nature23898 CrossrefGoogle Scholar
  • 16 Q. Liu, Y. Guo, and A. J. Freeman, Nano Lett. 13, 5264 (2013). 10.1021/nl4027346 CrossrefGoogle Scholar
  • 17 Z. Zhu, Y. Cheng, and U. Schwingenschlögl, New J. Phys. 15, 023010 (2013). 10.1088/1367-2630/15/2/023010 CrossrefGoogle Scholar
  • 18 L. Bawden, J. M. Riley, C. H. Kim, R. Sankar, E. J. Monkman, D. E. Shai, H. I. Wei, E. B. Lochocki, J. W. Wells, W. Meevasana, T. K. Kim, M. Hoesch, Y. Ohtsubo, P. L. Fèvre, C. J. Fennie, K. M. Shen, F. Chou, and P. D. C. King, Sci. Adv. 1, e1500495 (2015). 10.1126/sciadv.1500495 CrossrefGoogle Scholar
  • 19 H. Fu, Phys. Rev. B 87, 075139 (2013). 10.1103/PhysRevB.87.075139 CrossrefGoogle Scholar
  • 20 M. S. Bahramy, R. Arita, and N. Nagaosa, Phys. Rev. B 84, 041202 (2011). 10.1103/PhysRevB.84.041202 CrossrefGoogle Scholar
  • 21 C.-R. Wang, J.-C. Tung, R. Sankar, C.-T. Hsieh, Y.-Y. Chien, G.-Y. Guo, F. C. Chou, and W.-L. Lee, Phys. Rev. B 88, 081104 (2013). 10.1103/PhysRevB.88.081104 CrossrefGoogle Scholar
  • 22 Q. Liu, X. Zhang, J. A. Waugh, D. S. Dessau, and A. Zunger, Phys. Rev. B 94, 125207 (2016). 10.1103/PhysRevB.94.125207 CrossrefGoogle Scholar
  • 23 P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Tech. Universität Wien, Vienna, 2001). Google Scholar
  • 24 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 CrossrefGoogle Scholar
  • 25 A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, and B. A. Popovkin, J. Solid State Chem. 114, 379 (1995). 10.1006/jssc.1995.1058 CrossrefGoogle Scholar
  • 26 T. Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 CrossrefGoogle Scholar
  • 27 T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113 CrossrefGoogle Scholar
  • 28 T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005). 10.1103/PhysRevB.72.045121 CrossrefGoogle Scholar
  • 29 M. S. Bahramy, B.-J. Yang, R. Arita, and N. Nagaosa, Nat. Commun. 3, 679 (2012). 10.1038/ncomms1679 CrossrefGoogle Scholar
  • 30 X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin, D. B. Tanner, and G. L. Carr, Phys. Rev. Lett. 111, 155701 (2013). 10.1103/PhysRevLett.111.155701 CrossrefGoogle Scholar
  • 31 Y. Chen, X. Xi, W.-L. Yim, F. Peng, Y. Wang, H. Wang, Y. Ma, G. Liu, C. Sun, C. Ma, Z. Chen, and H. Berger, J. Phys. Chem. C 117, 25677 (2013). 10.1021/jp409824g CrossrefGoogle Scholar
  • 32 I. Gierz, B. Stadtmüller, J. Vuorinen, M. Lindroos, F. Meier, J. H. Dil, K. Kern, and C. R. Ast, Phys. Rev. B 81, 245430 (2010). 10.1103/PhysRevB.81.245430 CrossrefGoogle Scholar
  • 33 S. V. Eremeev, I. A. Nechaev, Y. M. Koroteev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. Lett. 108, 246802 (2012). 10.1103/PhysRevLett.108.246802 CrossrefGoogle Scholar
  • 34 L. Wu, J. Yang, T. Zhang, S. Wang, P. Wei, W. Zhang, L. Chen, and J. Yang, J. Phys.: Condens. Matter 28, 085801 (2016). 10.1088/0953-8984/28/8/085801 CrossrefGoogle Scholar
  • 35 J. A. Sans, F. J. Manjón, A. L. J. Pereira, R. Vilaplana, O. Gomis, A. Segura, A. Muñoz, P. Rodríguez-Hernández, C. Popescu, C. Drasar, and P. Ruleova, Phys. Rev. B 93, 024110 (2016). 10.1103/PhysRevB.93.024110 CrossrefGoogle Scholar
  • 36 B. Monserrat and D. Vanderbilt, Phys. Rev. Mater. 1, 054201 (2017). 10.1103/PhysRevMaterials.1.054201 CrossrefGoogle Scholar