- Full text:
- PDF (eReader) / PDF (Download) (598 kB)
At the electrode–electrolyte interface, hydrogen shows peculiar behavior being influenced by the dipole layer called Helmholtz layer. For the understanding of this system, first-principles methods have been intensively developed and applied to the benchmarking interface like Pt(111)-water; however, controversy still exists even on the hydrogen adsorption although being the simplest and most-studied problem. After giving introductory explanation of the electrochemical interface and reaction, we briefly review the advance of the theory. It has been revealed that the typical density functional calculations are occasionally not accurate enough and need to advance the description of electron correlation and nuclear quantum effect. The advanced calculation shows a promise of elucidating some experimental data providing therewith further theoretical challenges.
References
- 1 V. Hacker and S. Mitsushima, Fuel Cells and Hydrogen: From Fundamentals to Applied Research (Elsevier, New York, 2018). Google Scholar
- 2 N. M. Marković and P. N. Ross, Surf. Sci. Rep. 45, 117 (2002). 10.1016/S0167-5729(01)00022-X Crossref, Google Scholar
- 3 O’M. Bockris and S. U. M. Kahn, Surface Electrochemistry: A Molecular Level Approach (Plenum, New York, 1993). Crossref, Google Scholar
- 4 M. Gouy, J. Phys. Theor. Appl. 9, 457 (1910). 10.1051/jphystap:019100090045700 Crossref, Google Scholar
- 5 D. L. Chapman, Philos. Mag. 25, 475 (1913). 10.1080/14786440408634187 Crossref, Google Scholar
- 6 M. Otani and O. Sugino, Phys. Rev. B 73, 115407 (2006). 10.1103/PhysRevB.73.115407 Crossref, Google Scholar
- 7 M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, and T. Ikeshoji, J. Phys. Soc. Jpn. 77, 024802 (2008). 10.1143/JPSJ.77.024802 Link, Google Scholar
- 8 N. Bonnet, T. Morishita, O. Sugino, and M. Otani, Phys. Rev. Lett. 109, 266101 (2012). 10.1103/PhysRevLett.109.266101 Crossref, Google Scholar
- 9 D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1930 (1972). 10.1063/1.1678513 Crossref, Google Scholar
- 10 A. Kovalenko and F. Hirata, J. Chem. Phys. 110, 10095 (1999). 10.1063/1.478883 Crossref, Google Scholar
- 11 S. Nishihara and M. Otani, Phys. Rev. B 96, 115429 (2017). 10.1103/PhysRevB.96.115429 Crossref, Google Scholar
- 12 M. M. Melander, M. J. Kuisma, T. E. K. Christensen, and K. Honkala, J. Chem. Phys. 150, 041706 (2019). 10.1063/1.5047829 Crossref, Google Scholar
- (13) Repulsion between solute molecules missing in the Poisson–Boltzmann, or the steric effect, is considered in modified Poisson–Boltzmann models. Google Scholar
- 14 R. Jinnouchi and A. B. Anderson, Phys. Rev. B 77, 245417 (2008). 10.1103/PhysRevB.77.245417 Crossref, Google Scholar
- 15 G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari, and S. Goedecker, J. Chem. Phys. 144, 014103 (2016). 10.1063/1.4939125 Crossref, Google Scholar
- 16 S. Ringe, H. Oberhofer, and K. Reuter, J. Chem. Phys. 146, 134103 (2017). 10.1063/1.4978850 Crossref, Google Scholar
- 17 J. Haruyama, T. Ikeshoji, and M. Otani, Phys. Rev. Mater. 2, 095801 (2018). 10.1103/PhysRevMaterials.2.095801 Crossref, Google Scholar
- 18 Y. Ando, Y. Gohda, and S. Tsuneyuki, Chem. Phys. Lett. 556, 9 (2013). 10.1016/j.cplett.2012.11.062 Crossref, Google Scholar
- 19 D. L. Doering and T. E. Madey, Surf. Sci. 123, 305 (1982). 10.1016/0039-6028(82)90331-4 Crossref, Google Scholar
- 20 H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. Pettersson, and A. Nilsson, Phys. Rev. Lett. 89, 276102 (2002). 10.1103/PhysRevLett.89.276102 Crossref, Google Scholar
- 21 G. A. Kimmel, N. G. Petrik, Z. Dohnálek, and B. D. Kay, Phys. Rev. Lett. 95, 166102 (2005). 10.1103/PhysRevLett.95.166102 Crossref, Google Scholar
- 22 M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, and T. Ikeshoji, Phys. Chem. Chem. Phys. 10, 3609 (2008). 10.1039/b803541e Crossref, Google Scholar
- 23 I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, and M. T. M. Koper, Nat. Energy 2, 17031 (2017). 10.1038/nenergy.2017.31 Crossref, Google Scholar
- 24 C. Batchelor-McAuley, E. Kätelhön, E. O. Barnes, R. G. Compton, E. Laborda, and A. Molina, ChemistryOpen 4, 224 (2015). 10.1002/open.201500042 Crossref, Google Scholar
- 25 G. S. Karlberg, T. F. Jaramillo, E. Skúlason, J. Rossmeisl, T. Bligaard, and J. K. Nørskov, Phys. Rev. Lett. 99, 126101 (2007). 10.1103/PhysRevLett.99.126101 Crossref, Google Scholar
- 26 Y. W. Li and M. J. Janik, Curr. Opin. Electrochem. 14, 124 (2019). 10.1016/j.coelec.2019.01.005 Crossref, Google Scholar
- 27 G. Jerkiewicz, Electrocatalysis 1, 179 (2010). 10.1007/s12678-010-0022-1 Crossref, Google Scholar
- 28 A. Lasia, J. Electroanal. Chem. 562, 23 (2004). 10.1016/j.jelechem.2003.07.033 Crossref, Google Scholar
- 29 A. M. Gómez-Marín and E. A. Ticianelli, Curr. Opin. Electrochem. 9, 129 (2018). 10.1016/j.coelec.2018.03.008 Crossref, Google Scholar
- 30 T. T. T. Hanh, Y. Takimoto, and O. Sugino, Surf. Sci. 625, 104 (2014). 10.1016/j.susc.2014.03.006 Crossref, Google Scholar
- 31 A. R. Zeradjanin, J.-P. Grote, G. Polymeros, and K. J. J. Mayrhofer, Electroanalysis 28, 2256 (2016). 10.1002/elan.201600270 Crossref, Google Scholar
- 32 T. L. Tan, L. L. Wang, D. D. Johnson, and K. W. Bai, J. Phys. Chem. C 117, 22696 (2013). 10.1021/jp405760z Crossref, Google Scholar
- 33 A. Tadjeddine and A. Peremans, Surf. Sci. 368, 377 (1996). 10.1016/S0039-6028(96)01079-5 Crossref, Google Scholar
- 34 H. Ogasawara and M. Ito, Chem. Phys. Lett. 221, 213 (1994). 10.1016/0009-2614(94)00247-9 Crossref, Google Scholar
- 35 K. Kunimatsu, T. Senzaki, G. Samjeske, M. Tsushima, and M. Osawa, Electrochim. Acta 52, 5715 (2007). 10.1016/j.electacta.2006.12.007 Crossref, Google Scholar
- 36 P. J. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Chem. Phys. B 105, 4018 (2001). 10.1021/jp002302t Crossref, Google Scholar
- 37 L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, M. F. Mittendorfer, and G. Kresse, Nat. Mater. 9, 741 (2010). 10.1038/nmat2806 Crossref, Google Scholar
- 38 L. Yan, Y. Sun, Y. Yamamoto, S. Kasamatsu, I. Hamada, and O. Sugino, J. Chem. Phys. 149, 164702 (2018). 10.1063/1.5050830 Crossref, Google Scholar
- 39 L. Yan, Y. Yamamoto, M. Shiga, and O. Sugino, unpublished. Google Scholar
- 40 D. Marx and M. Parrinello, Z. Phys. B 95, 143 (1994). 10.1007/BF01312185 Crossref, Google Scholar
- 41 See the review M. Nishijima, H. Okuyama, N. Takagi, T. Aruga, and W. Brenig, Surf. Sci. Rep. 57, 113 (2005), and references therein. 10.1016/j.surfrep.2005.03.001 Crossref, Google Scholar
- 42 C.-H. Hsu, B. E. Larson, M. El-Batanouny, C. R. Willis, and K. M. Martini, Phys. Rev. Lett. 66, 3164 (1991). 10.1103/PhysRevLett.66.3164 Crossref, Google Scholar
- 43 K. Sakaushi, A. Lyalin, T. Taketsugu, and K. Uosaki, Phys. Rev. Lett. 121, 236001 (2018). 10.1103/PhysRevLett.121.236001 Crossref, Google Scholar
- 44 C. Z. Zheng, C. K. Yeung, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett. 97, 166101 (2006). 10.1103/PhysRevLett.97.166101 Crossref, Google Scholar
- 45 R. Jinnouchi and A. B. Anderson, J. Phys. Chem. C 112, 8747 (2008). 10.1021/jp802627s Crossref, Google Scholar
- 46 H. A. Asiri and A. B. Anderson, J. Phys. Chem. C 117, 17509 (2013). 10.1021/jp401909n Crossref, Google Scholar
- 47 E. Skúlason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson, and J. K. Nørskov, Phys. Chem. Chem. Phys. 9, 3241 (2007). 10.1039/B700099E Crossref, Google Scholar
- 48 P. S. Rice, Y. Mao, C. X. Guo, and P. Hu, Phys. Chem. Chem. Phys. 21, 5932 (2019). 10.1039/C8CP07511E Crossref, Google Scholar
- 49 Y. Kim, S. Shin, and H. Kang, Angew. Chem., Int. Ed. 54, 7626 (2015). 10.1002/anie.201500410 Crossref, Google Scholar
- 50 Y. Kim, C. Noh, Y. Jung, and H. Kang, Chem.—Eur. J. 23, 17566 (2017). 10.1002/chem.201703882 Crossref, Google Scholar
- 51 M. Pavese, D. R. Berard, and G. A. Voth, Chem. Phys. Lett. 300, 93 (1999). 10.1016/S0009-2614(98)01326-8 Crossref, Google Scholar