J. Phys. Soc. Jpn. 89, 051014 (2020) [9 Pages]
SPECIAL TOPICS: Frontier of Hydrogen Science

Multimetallic Rare Earth and Group 4 Transition Metal Hydrides for Novel Transformations of Small Molecules

+ Affiliations
1Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan2Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan

Hydrogenolysis of mono(cyclopentadienyl (Cp))-ligated rare earth metal alkyl complexes with H2 affords a variety of multimetallic rare earth hydride complexes, which can serve as a unique platform for activation of various substrates such as CO, CO2, H2, and unsaturated C–C and C–N bonds. By using the mono-Cp-ligated rare earth species as a building block, novel d–f heteromultimetallic hydride complexes could be prepared, which show some interesting reactivities toward small molecules such as C–O bond cleavage and C–C bond formation of CO, and reversible H2 uptake and release under crystalline form. A titanium hydride complex shows high activity toward inert molecules such as N–N bond cleavage and N–H bond formation of N2, C–C bond cleavage and rearrangement of benzene, and hydrodenitrogenation of pyridines under mild conditions. These reactions are induced by synergistic effects of multiple metal hydrides.

©2020 The Physical Society of Japan

References

  • 1 D. Meng, M. Sakata, K. Shimizu, Y. Iijima, H. Saitoh, T. Sato, S. Takagi, and S. Orimo, Phys. Rev. B 99, 024508 (2019). 10.1103/PhysRevB.99.024508 CrossrefGoogle Scholar
  • 2 C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Angew. Chem., Int. Ed. 53, 10377 (2014). 10.1002/anie.201405453 CrossrefGoogle Scholar
  • 3 G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka, and R. Kanno, Science 351, 1314 (2016). 10.1126/science.aac9185 CrossrefGoogle Scholar
  • 4 S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. 107, 4111 (2007). 10.1021/cr0501846 CrossrefGoogle Scholar
  • 5 J. R. Norton and J. Sowa, Chem. Rev. 116, 8315 (2016), See also the related reviews in this special issue. 10.1021/acs.chemrev.6b00441 CrossrefGoogle Scholar
  • 6 T. Takao and H. Suzuki, Bull. Chem. Soc. Jpn. 87, 443 (2014). 10.1246/bcsj.20130294 CrossrefGoogle Scholar
  • 7 H. Suzuki, T. Kakigano, K. Tada, M. Igarashi, K. Matsubara, A. Inagaki, M. Oshima, and T. Takao, Bull. Chem. Soc. Jpn. 78, 67 (2005). 10.1246/bcsj.78.67 CrossrefGoogle Scholar
  • 8 G. S. McGrady and G. Guilera, Chem. Soc. Rev. 32, 383 (2003). 10.1039/b207999m CrossrefGoogle Scholar
  • 9 H. Suzuki, Eur. J. Inorg. Chem. 2002, 1009 (2002). 10.1002/1099-0682(200205)2002:5%3C1009::AID-EJIC1009%3E3.0.CO;2-0 CrossrefGoogle Scholar
  • 10 F. Maseras, A. Lledόs, E. Clot, and O. Eisenstein, Chem. Rev. 100, 601 (2000). 10.1021/cr980397d CrossrefGoogle Scholar
  • 11 S. Sabo-Etienne and B. Chaudret, Chem. Rev. 98, 2077 (1998). 10.1021/cr9601066 CrossrefGoogle Scholar
  • 12 R. Bau and M. H. Drabnis, Inorg. Chim. Acta 259, 27 (1997). 10.1016/S0020-1693(97)89125-6 CrossrefGoogle Scholar
  • 13 Z. Lin and M. B. Hall, Coord. Chem. Rev. 135–136, 845 (1994). 10.1016/0010-8545(94)80084-7 CrossrefGoogle Scholar
  • 14 R. H. Crabtree, in Comprehensive Coordination Chemistry, ed. G. Wilkinson, J. A. Gillar, and J. A. McCleverty (Pergamon, Oxford, U.K., 1987) Vol. 2, p. 689. Google Scholar
  • 15 G. G. Hlatky and R. H. Crabtree, Coord. Chem. Rev. 65, 1 (1985). 10.1016/0010-8545(85)85020-7 CrossrefGoogle Scholar
  • 16 L. M. Venanzi, Coord. Chem. Rev. 43, 251 (1982). 10.1016/S0010-8545(00)82099-8 CrossrefGoogle Scholar
  • 17 W. J. Evans, J. H. Meadows, A. L. Wayda, W. E. Hunter, and J. L. Atwood, J. Am. Chem. Soc. 104, 2008 (1982). 10.1021/ja00371a035 CrossrefGoogle Scholar
  • 18 G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann, and T. J. Marks, J. Am. Chem. Soc. 107, 8091 (1985). 10.1021/ja00312a050 CrossrefGoogle Scholar
  • 19 M. E. Thompson, S. M. Baxter, A. R. Bulls, B. J. Burger, M. C. Nolan, B. D. Santarsiero, W. P. Schaefer, and J. E. Bercaw, J. Am. Chem. Soc. 109, 203 (1987). 10.1021/ja00235a031 CrossrefGoogle Scholar
  • 20 O. Tardif, M. Nishiura, and Z. Hou, Organometallics 22, 1171 (2003). 10.1021/om021014b CrossrefGoogle Scholar
  • 21 O. Tardif, D. Hashizume, and Z. Hou, J. Am. Chem. Soc. 126, 8080 (2004). 10.1021/ja047889u CrossrefGoogle Scholar
  • 22 Z. Hou, M. Nishiura, and T. Shima, Eur. J. Inorg. Chem. 2007, 2535 (2007). 10.1002/ejic.200700085 CrossrefGoogle Scholar
  • 23 T. Shima and Z. Hou, in Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, ed. Z. Zheng (Springer, Berlin/Heidelberg, 2016). Google Scholar
  • 24 M. Nishiura and Z. Hou, Nat. Chem. 2, 257 (2010). 10.1038/nchem.595 CrossrefGoogle Scholar
  • 25 M. Nishiura, J. Baldamus, T. Shima, K. Mori, and Z. Hou, Chem.—Eur. J. 17, 5033 (2011). 10.1002/chem.201002998 CrossrefGoogle Scholar
  • 26 M. Brookhart, M. L. H. Green, and G. Parkin, Proc. Natl. Acad. Sci. U.S.A. 104, 6908 (2007). 10.1073/pnas.0610747104 CrossrefGoogle Scholar
  • 27 W. Zhang, M. Nishiura, T. Mashiko, and Z. Hou, Chem.—Eur. J. 14, 2167 (2008). 10.1002/chem.200701300 CrossrefGoogle Scholar
  • 28 T. Shima, M. Nishiura, and Z. Hou, Organometallics 30, 2513 (2011). 10.1021/om1012055 CrossrefGoogle Scholar
  • 29 D. Cui, O. Tardif, and Z. Hou, J. Am. Chem. Soc. 126, 1312 (2004). 10.1021/ja039324o CrossrefGoogle Scholar
  • 30 Z. Hou, Y. Zhang, O. Tardif, and Y. Wakatsuki, J. Am. Chem. Soc. 123, 9216 (2001). 10.1021/ja010555+ CrossrefGoogle Scholar
  • 31 I. Castillo and T. D. Tilley, Organometallics 20, 5598 (2001). 10.1021/om010709u CrossrefGoogle Scholar
  • 32 S. Arndt, P. Voth, T. P. Spaniol, and J. Okuda, Organometallics 19, 4690 (2000). 10.1021/om000506q CrossrefGoogle Scholar
  • 33 A. Z. Voskoboynikov, I. N. Parshina, A. K. Shestakova, K. P. Butin, I. P. Beletskaya, L. G. Kuz’mina, and J. A. K. Howard, Organometallics 16, 4041 (1997). 10.1021/om970363g CrossrefGoogle Scholar
  • 34 J. Cheng, K. Saliu, G. Y. Kiel, M. J. Ferguson, R. McDonald, and J. Takats, Angew. Chem., Int. Ed. 47, 4910 (2008). 10.1002/anie.200705977 CrossrefGoogle Scholar
  • 35 Y. Takenaka and Z. Hou, Organometallics 28, 5196 (2009). 10.1021/om900453j CrossrefGoogle Scholar
  • 36 K. H. Den Haan, Y. Wielstra, and J. H. Teuben, Organometallics 6, 2053 (1987). 10.1021/om00153a004 CrossrefGoogle Scholar
  • 37 J. Cheng, T. Shima, and Z. Hou, Angew. Chem., Int. Ed. 50, 1857 (2011). 10.1002/anie.201006812 CrossrefGoogle Scholar
  • 38 T. Shima and Z. Hou, J. Am. Chem. Soc. 128, 8124 (2006). 10.1021/ja062348l CrossrefGoogle Scholar
  • 39 Y. Takenaka, T. Shima, J. Baldamus, and Z. Hou, Angew. Chem., Int. Ed. 48, 7888 (2009). 10.1002/anie.200903660 CrossrefGoogle Scholar
  • 40 W. J. Evans, J. H. Meadows, W. E. Hunter, and J. L. Atwood, J. Am. Chem. Soc. 106, 1291 (1984). 10.1021/ja00317a020 CrossrefGoogle Scholar
  • 41 J. E. Bercaw, D. L. Davies, and P. T. Wolczanski, Organometallics 5, 443 (1986). 10.1021/om00134a009 CrossrefGoogle Scholar
  • 42 D. Cui, M. Nishiura, and Z. Hou, Angew. Chem., Int. Ed. 44, 959 (2005). 10.1002/anie.200461939 CrossrefGoogle Scholar
  • 43 X. Li, J. Baldamus, M. Nishiura, O. Tardif, and Z. Hou, Angew. Chem., Int. Ed. 45, 8184 (2006). 10.1002/anie.200603450 CrossrefGoogle Scholar
  • 44 G. J. Kubas, Chem. Rev. 107, 4152 (2007). 10.1021/cr050197j CrossrefGoogle Scholar
  • 45 L. Schlapbach and A. Züttel, Nature 414, 353 (2001). 10.1038/35104634 CrossrefGoogle Scholar
  • 46 M. Takimoto and Z. Hou, Nature 443, 400 (2006). 10.1038/443400a CrossrefGoogle Scholar
  • 47 F. Schüth, B. Bogdanović, and M. Felderhoff, Chem. Commun., 2249 (2004). 10.1039/B406522K CrossrefGoogle Scholar
  • 48 T. Shima, Y. Luo, T. Stewart, R. Bau, G. J. McIntyre, S. A. Mason, and Z. Hou, Nat. Chem. 3, 814 (2011). 10.1038/nchem.1147 CrossrefGoogle Scholar
  • 49 T. Shima and Z. Hou, Chem.—Eur. J. 19, 3458 (2013). 10.1002/chem.201203495 CrossrefGoogle Scholar
  • 50 T. Shima and Z. Hou, Chem. Lett. 37, 298 (2008). 10.1246/cl.2008.298 CrossrefGoogle Scholar
  • 51 D. Kawai, T. Shima, M. Nishiura, and Z. Hou, J. Organomet. Chem. 847, 74 (2017). 10.1016/j.jorganchem.2017.02.042 CrossrefGoogle Scholar
  • 52 T. Shima and Z. Hou, Dinitrogen Fixation by Transition Metal Hydride Complexes. In Nitrogen Fixation. Topics in Organometallic Chemistry, ed. Y. Nishibayashi (Springer, New York, 2017) Vol. 60, p. 23. 10.1007/3418_2016_3 CrossrefGoogle Scholar
  • 53 P. T. Wolczanski and J. E. Bercaw, Organometallics 1, 793 (1982). 10.1021/om00066a006 CrossrefGoogle Scholar
  • 54 S. Hu, T. Shima, Y. Luo, and Z. Hou, Organometallics 32, 2145 (2013). 10.1021/om400012a CrossrefGoogle Scholar
  • 55 T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, and Z. Hou, Science 340, 1549 (2013). 10.1126/science.1238663 CrossrefGoogle Scholar
  • 56 Transition Metal-Dinitrogen Complexes, ed. Y. Nishibayashi (Wiley-VCH, Weinheim, 2019). CrossrefGoogle Scholar
  • 57 N. Stucke, B. M. Flöser, T. Weyrich, and F. Tuczek, Eur. J. Inorg. Chem. 2018, 1337 (2018). 10.1002/ejic.201701326 CrossrefGoogle Scholar
  • 58 Nitrogen Fixation. Topics in Organometallic Chemistry 60, ed. Y. Nishibayashi (Springer, New York, 2017). Google Scholar
  • 59 R. J. Burford and M. D. Fryzuk, Nat. Rev. Chem. 1, 0026 (2017). 10.1038/s41570-017-0026 CrossrefGoogle Scholar
  • 60 R. J. Burford, A. Yeo, and M. D. Fryzuk, Coord. Chem. Rev. 334, 84 (2017). 10.1016/j.ccr.2016.06.015 CrossrefGoogle Scholar
  • 61 M. D. Walter, Adv. Organomet. Chem. 65, 261 (2016). 10.1016/bs.adomc.2016.03.001 CrossrefGoogle Scholar
  • 62 S. F. McWilliams and P. L. Holland, Acc. Chem. Res. 48, 2059 (2015). 10.1021/acs.accounts.5b00213 CrossrefGoogle Scholar
  • 63 H. P. Jia and E. A. Quadrelli, Chem. Soc. Rev. 43, 547 (2014). 10.1039/C3CS60206K CrossrefGoogle Scholar
  • 64 J. Ballmann, R. F. Munhá, and M. D. Fryzuk, Chem. Commun. 46, 1013 (2010). 10.1039/b922853e CrossrefGoogle Scholar
  • 65 M. M. Guru, T. Shima, and Z. Hou, Angew. Chem., Int. Ed. 55, 12316 (2016). 10.1002/anie.201607426 CrossrefGoogle Scholar
  • 66 T. Shima, G. Luo, S. Hu, Y. Luo, and Z. Hou, J. Am. Chem. Soc. 141, 2713 (2019). 10.1021/jacs.8b13341 CrossrefGoogle Scholar
  • 67 S. Hu, T. Shima, and Z. Hou, Nature 512, 413 (2014). 10.1038/nature13624 CrossrefGoogle Scholar
  • 68 X. Kang, G. Luo, L. Luo, S. Hu, Y. Luo, and Z. Hou, J. Am. Chem. Soc. 138, 11550 (2016). 10.1021/jacs.6b03545 CrossrefGoogle Scholar
  • 69 S. Hu, G. Luo, T. Shima, Y. Luo, and Z. Hou, Nat. Commun. 8, 1866 (2017). 10.1038/s41467-017-01607-z CrossrefGoogle Scholar
  • 70 B. Wang, G. Luo, M. Nishiura, S. Hu, T. Shima, Y. Luo, and Z. Hou, J. Am. Chem. Soc. 139, 1818 (2017). 10.1021/jacs.6b13323 CrossrefGoogle Scholar