J. Phys. Soc. Jpn. 89, 051016 (2020) [12 Pages]
SPECIAL TOPICS: Frontier of Hydrogen Science

Nuclear Spin Conversion of H2, H2O, and CH4 Interacting with Diamagnetic Insulators

+ Affiliations
1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan2Institute of Industrial Science, the University of Tokyo, Meguro, Tokyo 153-8505, Japan

A molecule including two or more hydrogen nuclei in the rotationally symmetric positions exists in nuclear spin isomers according to their resultant spin. Owing to the quantum statistics, the isomers occupy specific rotational states, which enables us to distinguish them by rotationally-resolved spectroscopy. Whereas the interconversion between the isomers are strictly forbidden in the isolated state, it is highly promoted in condensed systems. Focusing on simple and astronomically important molecules of H2, H2O, and CH4, we review recent theoretical and experimental studies on the nuclear spin conversion proceeding on or in diamagnetic insulators. The fundamental difference between the conversion models of diatomic and polyatomic molecules is also clarified.

©2020 The Physical Society of Japan

References

  • 1 F. Hund, Z. Phys. 42, 93 (1927). 10.1007/BF01397124 CrossrefGoogle Scholar
  • 2 D. M. Dennison, Proc. R. Soc. London, Ser. A 115, 483 (1927). 10.1098/rspa.1927.0105 CrossrefGoogle Scholar
  • 3 W. Heisenberg, Z. Phys. 41, 239 (1927). 10.1007/BF01391241 CrossrefGoogle Scholar
  • 4 K. Scheel and W. Heuse, Ann. Phys. 345, 473 (1913). 10.1002/andp.19133450305 CrossrefGoogle Scholar
  • 5 F. A. Giacomini, Philos. Mag. 50, 146 (1925). 10.1080/14786442508634723 CrossrefGoogle Scholar
  • 6 J. H. Brinkworth, Proc. R. Soc. London, Ser. A 107, 510 (1925). 10.1098/rspa.1925.0039 CrossrefGoogle Scholar
  • 7 J. R. Partington and A. B. Howe, Proc. R. Soc. London, Ser. A 109, 286 (1925). 10.1098/rspa.1925.0125 CrossrefGoogle Scholar
  • 8 R. Mecke, Phys. Z. 25, 597 (1927). Google Scholar
  • 9 T. Hori, Z. Phys. 44, 834 (1927). 10.1007/BF01390857 CrossrefGoogle Scholar
  • 10 K. Pachucki and J. Komasa, Phys. Rev. A 77, 030501(R) (2008). 10.1103/PhysRevA.77.030501 CrossrefGoogle Scholar
  • 11 J.-H. Fillion, M. Bertin, A. Lekic, A. Moudens, L. Philippe, and X. Michaut, EAS Publications Series 58, 307 (2012). 10.1051/eas/1258051 CrossrefGoogle Scholar
  • 12 K. Yamakawa, S. Azami, and I. Arakawa, Eur. Phys. J. D 71, 70 (2017). 10.1140/epjd/e2017-70642-8 CrossrefGoogle Scholar
  • 13 P. A. Turgeon, J. Vermette, G. Alexandrowicz, Y. Peperstraete, L. Philippe, M. Bertin, J. H. Fillion, X. Michaut, and P. Ayotte, J. Phys. Chem. A 121, 1571 (2017). 10.1021/acs.jpca.7b00893 CrossrefGoogle Scholar
  • 14 B. Gauthier-Roy, L. Abouaf-Marguin, and P. Boissel, J. Chem. Phys. 98, 6827 (1993). 10.1063/1.464774 CrossrefGoogle Scholar
  • 15 P. Boissel, B. Gauthier-Roy, and L. Abouaf-Marguin, J. Chem. Phys. 98, 6835 (1993). 10.1063/1.464775 CrossrefGoogle Scholar
  • 16 M. Ruzi and D. T. Anderson, J. Phys. Chem. A 117, 9712 (2013). 10.1021/jp3123727 CrossrefGoogle Scholar
  • 17 Y. Miyamoto, M. Fushitani, D. Ando, and T. Momose, J. Chem. Phys. 128, 114502 (2008). 10.1063/1.2889002 CrossrefGoogle Scholar
  • 18 A. Lekic, Dr. Thesis, Université Pierre et Marie Curie-Paris 6 (2011). Google Scholar
  • 19 T. Sugimoto, K. Yamakawa, and I. Arakawa, J. Chem. Phys. 143, 224305 (2015). 10.1063/1.4936655 CrossrefGoogle Scholar
  • 20 T. Sugimoto, I. Arakawa, and K. Yamakawa, Eur. Phys. J. D 72, 42 (2018). 10.1140/epjd/e2017-80564-0 CrossrefGoogle Scholar
  • 21 T. Sugimoto, H. Nasu, I. Arakawa, and K. Yamakawa, J. Chem. Phys. 150, 184302 (2019). 10.1063/1.5091070 CrossrefGoogle Scholar
  • 22 C. Bechtel, E. Elias, and B. F. Schramm, J. Mol. Struct. 741, 97 (2005). 10.1016/j.molstruc.2005.01.056 CrossrefGoogle Scholar
  • 23 Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, Science 311, 365 (2006). 10.1126/science.1121300 CrossrefGoogle Scholar
  • 24 J. P. Perchard, Chem. Phys. 332, 86 (2007). 10.1016/j.chemphys.2006.11.030 CrossrefGoogle Scholar
  • 25 M. Tudorie, M. Khelkhal, J. Cosléou, and P. Cacciani, Surf. Sci. 601, 1630 (2007). 10.1016/j.susc.2007.01.029 CrossrefGoogle Scholar
  • 26 T. Hasegawa, I. Gatley, R. P. Garden, P. W. J. L. Brand, M. Ohishi, M. Hayashi, and N. Kaifu, Astrophys. J. 318, L77 (1987). 10.1086/184941 CrossrefGoogle Scholar
  • 27 D. A. Neufeld, G. J. Melnick, and M. Harwit, Astrophys. J. 506, L75 (1998). 10.1086/311636 CrossrefGoogle Scholar
  • 28 A. Fuente, J. Martín-Pintado, N. Rodríguez-Fernández, A. Rodríguez-Franco, and P. de Vicente, Astrophys. J. 518, L45 (1999). 10.1086/312063 CrossrefGoogle Scholar
  • 29 N. J. Rodríguez-Fernández, J. Martín-Pintado, P. de Vicente, A. Fuente, S. Hüttemeister, T. L. Wilson, and D. Kunze, Astron. Astrophys. 356, 695 (2000). Google Scholar
  • 30 D. A. Neufeld, B. Nisini, T. Giannini, G. J. Melnick, E. A. Bergin, Y. Yuan, S. Maret, V. Tolls, R. Güsten, and M. J. Kaufman, Astrophys. J. 706, 170 (2009). 10.1088/0004-637X/706/1/170 CrossrefGoogle Scholar
  • 31 T. Hama and N. Watanabe, Chem. Rev. 113, 8783 (2013). 10.1021/cr4000978 CrossrefGoogle Scholar
  • 32 A. H. Larsen, F. E. Simon, and C. A. Swenson, Rev. Sci. Instrum. 19, 266 (1948). 10.1063/1.1741241 CrossrefGoogle Scholar
  • 33 Y. Y. Milenko, R. M. Sibileva, and M. A. Strzhemechny, J. Low Temp. Phys. 107, 77 (1997). 10.1007/BF02396837 CrossrefGoogle Scholar
  • 34 M. J. Matthews, G. Petipas, and S. M. Aceves, Appl. Phys. Lett. 99, 081906 (2011). 10.1063/1.3628453 CrossrefGoogle Scholar
  • 35 F. Schmidt, Phys. Rev. B 10, 4480 (1974). 10.1103/PhysRevB.10.4480 CrossrefGoogle Scholar
  • 36 I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980). 10.1103/RevModPhys.52.393 CrossrefGoogle Scholar
  • 37 M. G. Pravica and I. F. Silvera, Phys. Rev. Lett. 81, 4180 (1998). 10.1103/PhysRevLett.81.4180 CrossrefGoogle Scholar
  • 38 M. A. Strzhemechny, R. J. Hemley, H. K. Mao, A. F. Goncharov, and J. H. Eggert, Phys. Rev. B 66, 014103 (2002). 10.1103/PhysRevB.66.014103 CrossrefGoogle Scholar
  • 39 G. Buntkowsky, B. Walaszek, A. Adamczyk, Y. Xu, H. H. Limbach, and B. Chaudret, Phys. Chem. Chem. Phys. 8, 1929 (2006). 10.1039/b601594h CrossrefGoogle Scholar
  • 40 E. Wigner, Z. Phys. Chem. B 23, 28 (1933). Google Scholar
  • 41 E. Ilisca, Prog. Surf. Sci. 41, 217 (1992). 10.1016/0079-6816(92)90019-E CrossrefGoogle Scholar
  • 42 P. Avouris, D. Schmeisser, and J. E. Demuth, Phys. Rev. Lett. 48, 199 (1982). 10.1103/PhysRevLett.48.199 CrossrefGoogle Scholar
  • 43 S. Andersson and J. Harris, Phys. Rev. Lett. 48, 545 (1982). 10.1103/PhysRevLett.48.545 CrossrefGoogle Scholar
  • 44 M. Sakurai, T. Okano, and Y. Tuzi, Appl. Surf. Sci. 33–34, 245 (1988). 10.1016/0169-4332(88)90312-1 CrossrefGoogle Scholar
  • 45 E. Ilisca, Phys. Rev. Lett. 66, 667 (1991). 10.1103/PhysRevLett.66.667 CrossrefGoogle Scholar
  • 46 K. Fukutani, K. Yoshida, M. Wilde, W. A. Diño, M. Matsumoto, and T. Okano, Phys. Rev. Lett. 90, 096103 (2003). 10.1103/PhysRevLett.90.096103 CrossrefGoogle Scholar
  • 47 L. Amiaud, A. Momeni, F. Dulieu, J. H. Fillion, E. Matar, and J. L. Lemaire, Phys. Rev. Lett. 100, 056101 (2008). 10.1103/PhysRevLett.100.056101 CrossrefGoogle Scholar
  • 48 T. Sugimoto and K. Fukutani, Nat. Phys. 7, 307 (2011). 10.1038/nphys1883 CrossrefGoogle Scholar
  • 49 K. Fukutani and T. Sugimoto, Prog. Surf. Sci. 88, 279 (2013). 10.1016/j.progsurf.2013.09.001 CrossrefGoogle Scholar
  • 50 H. Ueta, N. Watanabe, T. Hama, and A. Kouchi, Phys. Rev. Lett. 116, 253201 (2016). 10.1103/PhysRevLett.116.253201 CrossrefGoogle Scholar
  • 51 S. A. FitzGerald, J. Hopkins, B. Burkholder, M. Friedman, and J. L. C. Rowsell, Phys. Rev. B 81, 104305 (2010). 10.1103/PhysRevB.81.104305 CrossrefGoogle Scholar
  • 52 T. Kosone, A. Hori, E. Nishibori, Y. Kubota, A. Mishima, M. Ohba, H. Tanaka, K. Kato, J. Kim, J. A. Real, S. Kitagawa, and M. Takata, R. Soc. Open Sci. 2, 150006 (2015). 10.1098/rsos.150006 CrossrefGoogle Scholar
  • 53 E. Ilisca, Europhys. Lett. 104, 18001 (2013). 10.1209/0295-5075/104/18001 CrossrefGoogle Scholar
  • 54 E. Ilisca and F. Ghiglieno, Eur. Phys. J. B 87, 235 (2014). 10.1140/epjb/e2014-50282-2 CrossrefGoogle Scholar
  • 55 E. Ilisca and F. Ghiglieno, R. Soc. Open Sci. 3, 160042 (2016). 10.1098/rsos.160042 CrossrefGoogle Scholar
  • 56 E. Ilisca and F. Ghiglieno, Chem. Phys. Lett. 667, 233 (2017). 10.1016/j.cplett.2016.11.056 CrossrefGoogle Scholar
  • 57 E. Ilisca, Chem. Phys. Lett. 713, 289 (2018). 10.1016/j.cplett.2018.10.053 CrossrefGoogle Scholar
  • 58 R. F. Curl, Jr., J. V. V. Kasper, and K. S. Pitzer, J. Chem. Phys. 46, 3220 (1967). 10.1063/1.1841193 CrossrefGoogle Scholar
  • 59 P. L. Chapovsky, Phys. Rev. A 43, 3624 (1991). 10.1103/PhysRevA.43.3624 CrossrefGoogle Scholar
  • 60 P. Cacciani, J. Cosléou, and M. Khelkhal, Phys. Rev. A 85, 012521 (2012). 10.1103/PhysRevA.85.012521 CrossrefGoogle Scholar
  • 61 P. Cacciani, J. Cosléou, M. Khelkhal, P. Čermák, and C. Puzzarini, J. Phys. Chem. A 120, 173 (2016). 10.1021/acs.jpca.5b09454 CrossrefGoogle Scholar
  • 62 K. Tanaka, M. Hayashi, M. Ohtsuki, K. Harada, and T. Tanaka, J. Chem. Phys. 131, 111101 (2009). 10.1063/1.3231491 CrossrefGoogle Scholar
  • 63 Z. D. Sun, K. Takagi, and F. Matsushima, Science 310, 1938 (2005). 10.1126/science.1120037 CrossrefGoogle Scholar
  • 64 L. Pauling, Phys. Rev. 36, 430 (1930). 10.1103/PhysRev.36.430 CrossrefGoogle Scholar
  • 65 T. E. Stern, Proc. R. Soc. London, Ser. A 130, 551 (1931). 10.1098/rspa.1931.0024 CrossrefGoogle Scholar
  • 66 A. F. Devonshire, Proc. R. Soc. London, Ser. A 153, 601 (1936). 10.1098/rspa.1936.0026 CrossrefGoogle Scholar
  • 67 H. M. Cundy, Proc. R. Soc. London, Ser. A 164, 420 (1938). 10.1098/rspa.1938.0027 CrossrefGoogle Scholar
  • 68 H. F. King and D. F. Hornig, J. Chem. Phys. 44, 4520 (1966). 10.1063/1.1726668 CrossrefGoogle Scholar
  • 69 N. Jacobi and O. Schnepp, J. Chem. Phys. 57, 2516 (1972). 10.1063/1.1678618 CrossrefGoogle Scholar
  • 70 H. C. Longuet-Higgins, Mol. Phys. 6, 445 (1963). 10.1080/00268976300100501 CrossrefGoogle Scholar
  • 71 R. E. Miller and J. C. Decius, J. Chem. Phys. 59, 4871 (1973). 10.1063/1.1680700 CrossrefGoogle Scholar
  • 72 G. Herzberg, Molecular Spectra and Molecular Structure, second ed., I. Spectra of Diatomic Molecules (Krieger, Malabar, FL, 1950). Google Scholar
  • 73 K. Yamakawa and K. Fukutani, J. Phys. B 46, 085101 (2013). 10.1088/0953-4075/46/8/085101 CrossrefGoogle Scholar
  • 74 W. Pauli, Phys. Rev. 58, 716 (1940). 10.1103/PhysRev.58.716 CrossrefGoogle Scholar
  • 75 K. Yamakawa and K. Fukutani, Eur. Phys. J. D 69, 175 (2015). 10.1140/epjd/e2015-60142-4 CrossrefGoogle Scholar
  • 76 E. Ilisca and S. Sugano, Phys. Rev. Lett. 57, 2590 (1986). 10.1103/PhysRevLett.57.2590 CrossrefGoogle Scholar
  • 77 E. Ilisca, J. Phys. I France 1, 1785 (1991). 10.1051/jp1:1991240 CrossrefGoogle Scholar
  • 78 E. Ilisca, Surf. Sci. 242, 470 (1991). 10.1016/0039-6028(91)90311-F CrossrefGoogle Scholar
  • 79 C. Peng, M. Stavola, W. B. Fowler, and M. Lockwood, Phys. Rev. B 80, 125207 (2009). 10.1103/PhysRevB.80.125207 CrossrefGoogle Scholar
  • 80 S. Socher, E. V. Lavrov, and J. Weber, Phys. Rev. B 86, 125205 (2012). 10.1103/PhysRevB.86.125205 CrossrefGoogle Scholar
  •   (81) Although the notation of SOCY was used in the original paper,55) we adopt SCY to let one immediately associate a three-step process. Google Scholar
  • 82 P. L. Chapovsky, Physica A 233, 441 (1996). 10.1016/S0378-4371(96)00294-4 CrossrefGoogle Scholar
  • 83 P. L. Chapovsky and L. J. F. Hermans, Annu. Rev. Phys. Chem. 50, 315 (1999). 10.1146/annurev.physchem.50.1.315 CrossrefGoogle Scholar
  • 84 E. Ilisca and K. Bahloul, Phys. Rev. A 57, 4296 (1998). 10.1103/PhysRevA.57.4296 CrossrefGoogle Scholar
  • 85 P. L. Scott and C. D. Jeffries, Phys. Rev. 127, 32 (1962). 10.1103/PhysRev.127.32 CrossrefGoogle Scholar
  •   (86) Since the spherical symmetry is removed by the surrounding matrix-molecules, J is no longer a good quantum number but is used just for a label. Google Scholar
  •   (87) More precisely, the ortho and para states are slightly mixed at each level by the intramolecular spin–rotation interaction, which enables the transition between any two levels through phonon absorption or emission. Google Scholar
  • 88 A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, U.K., 1961). Google Scholar
  • 89 A. Farkas, Orthohydrogen, Parahydrogen, and Heavy Hydrogen (Cambridge University Press, Cambridge, U.K., 1935). Google Scholar
  • 90 F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013). 10.1103/PhysRevLett.111.175303 CrossrefGoogle Scholar
  • 91 S. Li, A. Yu, F. Toledo, Z. Han, H. Wang, H. Y. He, R. Wu, and W. Ho, Phys. Rev. Lett. 111, 146102 (2013). 10.1103/PhysRevLett.111.146102 CrossrefGoogle Scholar
  • 92 K. Yamakawa, Eur. Phys. J. D 70, 259 (2016). 10.1140/epjd/e2016-70569-6 CrossrefGoogle Scholar
  • 93 K. Yamakawa, Eur. Phys. J. D 73, 49 (2019). 10.1140/epjd/e2019-80496-7 CrossrefGoogle Scholar
  • 94 D. Forney, M. E. Jacox, and W. E. Thompson, J. Chem. Phys. 121, 5977 (2004). 10.1063/1.1778387 CrossrefGoogle Scholar
  • 95 R. D. Hunt and L. Andrews, J. Chem. Phys. 86, 3781 (1987). 10.1063/1.451934 CrossrefGoogle Scholar
  • 96 M. E. Jacox and W. E. Thompson, J. Chem. Phys. 119, 10824 (2003). 10.1063/1.1621383 CrossrefGoogle Scholar
  • 97 D. J. Dai and G. E. Ewing, J. Chem. Phys. 98, 5050 (1993). 10.1063/1.464959 CrossrefGoogle Scholar
  • 98 J. Heidberg, N. Gushanskaya, O. Schönekäs, and R. Schwarte, Surf. Sci. 331–333, 1473 (1995). 10.1016/0039-6028(95)00222-7 CrossrefGoogle Scholar
  • 99 M. Grunwald and G. E. Ewing, J. Chem. Phys. 109, 4990 (1998). 10.1063/1.477111 CrossrefGoogle Scholar
  • 100 S. Briquez, S. Picaud, C. Girardet, P. N. M. Hoang, J. Heidberg, and A. Voßberg, J. Chem. Phys. 109, 6435 (1998). 10.1063/1.477288 CrossrefGoogle Scholar
  • 101 J. Heidberg, A. Voßberg, M. Hustedt, M. Thomas, S. Briquez, S. Picaud, and C. Girardet, J. Chem. Phys. 110, 2566 (1999). 10.1063/1.477963 CrossrefGoogle Scholar
  • 102 K. Yamakawa and K. Fukutani, Chem. Phys. 472, 89 (2016). 10.1016/j.chemphys.2016.02.023 CrossrefGoogle Scholar
  • 103 H. G. Hixson, M. J. Wojcik, M. S. Devlin, J. P. Devlin, and V. Buch, J. Chem. Phys. 97, 753 (1992). 10.1063/1.463240 CrossrefGoogle Scholar
  • 104 V. Buch and J. P. Devlin, J. Chem. Phys. 98, 4195 (1993). 10.1063/1.465026 CrossrefGoogle Scholar
  • 105 M. H. Moore, R. L. Hudson, and P. A. Gerakines, Spectrochim. Acta, Part A 57, 843 (2001). 10.1016/S1386-1425(00)00448-0 CrossrefGoogle Scholar
  • 106 N. Watanabe, Y. Kimura, A. Kouchi, T. Chigai, T. Hama, and V. Pirronello, Astrophys. J. Lett. 714, L233 (2010). 10.1088/2041-8205/714/2/L233 CrossrefGoogle Scholar
  • 107 M. Chehrouri, J.-H. Fillion, H. Chaabouni, H. Mokrane, E. Congiu, F. Dulieu, E. Matar, X. Michaut, and J. Lemaire, Phys. Chem. Chem. Phys. 13, 2172 (2011). 10.1039/C0CP01322F CrossrefGoogle Scholar
  • 108 W. E. Carlos and P. C. Taylor, Phys. Rev. B 25, 1435 (1982). 10.1103/PhysRevB.25.1435 CrossrefGoogle Scholar
  • 109 E. V. Lavrov and J. Weber, Phys. Rev. Lett. 89, 215501 (2002). 10.1103/PhysRevLett.89.215501 CrossrefGoogle Scholar
  • 110 M. Hiller, E. V. Lavrov, and J. Weber, Phys. Rev. B 74, 235214 (2006). 10.1103/PhysRevB.74.235214 CrossrefGoogle Scholar
  • 111 M. Hiller, E. V. Lavrov, and J. Weber, Phys. Rev. Lett. 98, 055504 (2007). 10.1103/PhysRevLett.98.055504 CrossrefGoogle Scholar
  • 112 M. Hiller, E. V. Lavrov, and J. Weber, Phys. Rev. B 80, 045306 (2009). 10.1103/PhysRevB.80.045306 CrossrefGoogle Scholar
  • 113 F. T. Prochaska and L. Andrews, J. Chem. Phys. 67, 1139 (1977). 10.1063/1.434965 CrossrefGoogle Scholar
  •   (114) Note that OPR nearly equals zero at 12 K, as shown in Fig. 1. Google Scholar
  • 115 M. E. Alikhani, B. Silvi, J. P. Perchard, and V. Chandrasekharan, J. Chem. Phys. 90, 5221 (1989). 10.1063/1.456475 CrossrefGoogle Scholar
  • 116 M. E. Alikhani, L. Manceron, and J. P. Perchard, J. Chem. Phys. 92, 22 (1990). 10.1063/1.458468 CrossrefGoogle Scholar
  • 117 M. E. Alikhani, L. Manceron, and J. P. Perchard, Chem. Phys. 140, 51 (1990). 10.1016/0301-0104(90)89048-U CrossrefGoogle Scholar
  • 118 M. E. Alikhani and J. P. Perchard, J. Phys. Chem. 94, 6603 (1990). 10.1021/j100380a016 CrossrefGoogle Scholar
  • 119 M. E. Alikhani, L. Manceron, J. P. Perchard, and B. Silvi, J. Mol. Struct. 222, 185 (1990). 10.1016/0022-2860(90)80015-C CrossrefGoogle Scholar
  • 120 A. Kornath, A. Zoermer, and I. Köper, Spectrochim. Acta, Part A 55, 2593 (1999). 10.1016/S1386-1425(99)00054-2 CrossrefGoogle Scholar
  • 121 R. J. Kriegler and H. L. Welsh, Can. J. Phys. 46, 1181 (1968). 10.1139/p68-151 CrossrefGoogle Scholar
  • 122 J. A. Warren, G. R. Smith, and W. A. Guillory, J. Chem. Phys. 72, 4901 (1980). 10.1063/1.439774 CrossrefGoogle Scholar
  • 123 K. Yamakawa, T. Namiyoshi, A. Ishibashi, and I. Arakawa, unpublished. Google Scholar
  • 124 M. V. Thiel, E. D. Becker, and G. C. Pimentel, J. Chem. Phys. 27, 486 (1957). 10.1063/1.1743753 CrossrefGoogle Scholar
  • 125 G. P. Ayers and A. D. E. Pullin, Chem. Phys. Lett. 29, 609 (1974). 10.1016/0009-2614(74)85103-1 CrossrefGoogle Scholar
  • 126 A. Engdahl and B. Nelander, J. Mol. Struct. 193, 101 (1989). 10.1016/0022-2860(89)80125-5 CrossrefGoogle Scholar
  • 127 S. Hirabayashi and K. M. T. Yamada, J. Chem. Phys. 122, 244501 (2005). 10.1063/1.1943948 CrossrefGoogle Scholar
  • 128 S. Hirabayashi and K. M. T. Yamada, Chem. Phys. Lett. 435, 74 (2007). 10.1016/j.cplett.2006.12.083 CrossrefGoogle Scholar
  • 129 J. Ceponkus, P. Uvdal, and B. Nelander, J. Phys. Chem. A 116, 4842 (2012). 10.1021/jp301521b CrossrefGoogle Scholar
  • 130 J. Ceponkus, A. Engdahl, P. Uvdal, and B. Nelander, Chem. Phys. Lett. 581, 1 (2013). 10.1016/j.cplett.2013.06.046 CrossrefGoogle Scholar
  • 131 K. Yamakawa, N. Ehara, N. Ozawa, and I. Arakawa, AIP Adv. 6, 075302 (2016). 10.1063/1.4958329 CrossrefGoogle Scholar
  • 132 K. Yamakawa, J. Vac. Soc. Jpn. 60, 256 (2017). 10.3131/jvsj2.60.256 CrossrefGoogle Scholar
  • 133 Y. Shimazaki, I. Arakawa, and K. Yamakawa, AIP Adv. 8, 045313 (2018). 10.1063/1.5022707 CrossrefGoogle Scholar
  • 134 L. Abouaf-Marguin, A.-M. Vasserot, C. Pardanaud, and X. Michaut, Chem. Phys. Lett. 447, 232 (2007). 10.1016/j.cplett.2007.09.014 CrossrefGoogle Scholar
  • 135 L. Abouaf-Marguin, A.-M. Vasserot, C. Pardanaud, and X. Michaut, Chem. Phys. Lett. 480, 82 (2009). 10.1016/j.cplett.2009.08.071 CrossrefGoogle Scholar
  • 136 M. E. Fajardo, S. Tam, and M. E. DeRose, J. Mol. Struct. 695–696, 111 (2004). 10.1016/j.molstruc.2003.11.043 CrossrefGoogle Scholar
  • 137 X. Michaut, A.-M. Vasserot, and L. Abouaf-Marguin, Vib. Spectrosc. 34, 83 (2004). 10.1016/j.vibspec.2003.07.003 CrossrefGoogle Scholar
  • 138 R. Sliter, M. Gish, and A. F. Vilesov, J. Phys. Chem. A 115, 9682 (2011). 10.1021/jp201125k CrossrefGoogle Scholar
  • 139 Y. Choi, F. F. S. van der Tak, E. A. Bergin, and R. Plume, Astron. Astrophys. 572, L10 (2014). 10.1051/0004-6361/201424007 CrossrefGoogle Scholar
  • 140 M. R. Hogerheijde, E. A. Bergin, C. Brinch, L. I. Cleeves, J. K. J. Fogel, G. A. Blake, C. Dominik, D. C. Lis, G. Melnick, D. Neufeld, O. Panić, J. C. Pearson, L. Kristensen, U. A. Yildiz, and E. F. van Dishoeck, Science 334, 338 (2011). 10.1126/science.1208931 CrossrefGoogle Scholar
  • 141 E. F. van Dishoeck, E. Herbst, and D. A. Neufeld, Chem. Rev. 113, 9043 (2013). 10.1021/cr4003177 CrossrefGoogle Scholar
  • 142 T. Hama, A. Kouchi, and N. Watanabe, Science 351, 65 (2016). 10.1126/science.aad4026 CrossrefGoogle Scholar
  • 143 T. Hama, A. Kouchi, and N. Watanabe, Astrophys. J. Lett. 857, L13 (2018). 10.3847/2041-8213/aabc0c CrossrefGoogle Scholar
  • 144 K. P. Wong, J. D. Noble, M. Bloom, and S. Alexander, J. Magn. Reson. 1, 55 (1969). 10.1016/0022-2364(69)90007-9 CrossrefGoogle Scholar
  • 145 P. Van Hecke and L. Van Gerven, Physica (Utrecht) 68, 359 (1973). 10.1016/0031-8914(73)90105-5 CrossrefGoogle Scholar
  • 146 J. E. Piott and W. D. McCormick, Can. J. Phys. 54, 1784 (1976). 10.1139/p76-211 CrossrefGoogle Scholar
  • 147 R. F. Code and J. Higinbotham, Can. J. Phys. 54, 1248 (1976). 10.1139/p76-150 CrossrefGoogle Scholar
  • 148 S. Buchman, D. Candela, W. T. Vetterling, and R. V. Pound, Phys. Rev. B 26, 1459 (1982). 10.1103/PhysRevB.26.1459 CrossrefGoogle Scholar
  • 149 B. Ya. Gorodilov, A. I. Krivchikov, and O. A. Korolyuk, Low Temp. Phys. 31, 884 (2005). 10.1063/1.2126945 CrossrefGoogle Scholar
  • 150 E. Pisarska, P. Stachowiak, and A. Jeżowski, Low Temp. Phys. 33, 587 (2007). 10.1063/1.2755190 CrossrefGoogle Scholar
  • 151 K. J. Lushington and J. A. Morrison, Can. J. Phys. 55, 1580 (1977). 10.1139/p77-200 CrossrefGoogle Scholar
  • 152 S. Grieger, H. Friedrich, B. Asmussen, K. Guckelsberger, D. Nettling, W. Press, and R. Scherm, Z. Phys. B 87, 203 (1992). 10.1007/BF01315649 CrossrefGoogle Scholar
  • 153 F. H. Frayer and G. E. Ewing, J. Chem. Phys. 48, 781 (1968). 10.1063/1.1668712 CrossrefGoogle Scholar
  • 154 L. H. Jones, S. A. Ekberg, and B. I. Swanson, J. Chem. Phys. 85, 3203 (1986). 10.1063/1.450988 CrossrefGoogle Scholar
  • 155 K. Clusius, Z. Phys. Chem. B 3, 41 (1929). CrossrefGoogle Scholar
  • 156 C. Chapados and A. Cabana, Can. J. Chem. 50, 3521 (1972). 10.1139/v72-566 CrossrefGoogle Scholar