J. Phys. Soc. Jpn. 89, 074601 (2020) [6 Pages]

Ordering of Intercalated Fe Atoms in FexTiS2 Structures Clarified Using Transmission Electron Microscopy

+ Affiliations
School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan

The various physical properties of titanium disulfide (TiS2) crystals with intercalated iron (Fe) are reported to be influenced by the distribution of Fe atoms in the van der Waals gap between TiS2 layers. However, the distribution of Fe atoms in-plane and inter-plane is still open for dispute. Here, the ordering of intercalated Fe atoms in FexTiS2 structures is clarified using transmission electron diffraction and scanning transmission electron microscopy. At low concentration of x = 0.15, only short range orders of \(\sqrt{3} a\) or 2a are found within the layers. In contrast, long range orderings are found not only within the layers, but between the layers as well at x = 0.25 and 0.33 to make 2a × 2a × 2c and \(\sqrt{3} a \times \sqrt{3} a \times 2c\) superlattices, respectively. These superlattices can be regarded as three-dimensional structures rather than two-dimensional ones. It is also noted that superlattice reflections can disappear due to the coexistence of domains with different phases in diffraction results.

©2020 The Physical Society of Japan


  • 1 K. Motizuki and N. Suzuki, in Physics of New Materials, ed. F. E. Fujita (Springer, Berlin/Heidelberg, 1994) p. 106. CrossrefGoogle Scholar
  • 2 F. Pawula, R. Daou, S. Hébert, O. Lebedev, A. Maignan, A. Subedi, Y. Kakefuda, N. Kawamoto, T. Baba, and T. Mori, Phys. Rev. B 99, 085422 (2019). 10.1103/PhysRevB.99.085422 CrossrefGoogle Scholar
  • 3 J. Choe, K. Lee, C.-L. Huang, N. Trivedi, and E. Morosan, Phys. Rev. B 99, 064420 (2019). 10.1103/PhysRevB.99.064420 CrossrefGoogle Scholar
  • 4 H. Negishi, H. Takahashi, and M. Inoue, J. Magn. Magn. Mater. 68, 271 (1987). 10.1016/0304-8853(87)90286-1 CrossrefGoogle Scholar
  • 5 M. Koyano, M. Suezawa, H. Watanabe, and M. Inoue, J. Phys. Soc. Jpn. 63, 1114 (1994). 10.1143/JPSJ.63.1114 LinkGoogle Scholar
  • 6 H. Negishi, S. Ohara, M. Koyano, M. Inoue, T. Sakakibara, and T. Goto, J. Phys. Soc. Jpn. 57, 4083 (1988). 10.1143/JPSJ.57.4083 LinkGoogle Scholar
  • 7 T. Takahashi and O. Yamada, J. Solid State Chem. 7, 25 (1973). 10.1016/0022-4596(73)90116-3 CrossrefGoogle Scholar
  • 8 Y. Kuroiwa, H. Honda, and Y. Noda, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 341, 15 (2000). 10.1080/10587250008026110 CrossrefGoogle Scholar
  • 9 Y. Kuroiwa, M. Nishimura, Y. Noda, and Y. Morii, Phys. B: Condens. Matter 213–214, 396 (1995). 10.1016/0921-4526(95)00168-9 CrossrefGoogle Scholar
  • 10 Y. Kuroiwa, M. Nishimura, R. Nakajima, H. Abe, and Y. Noda, J. Phys. Soc. Jpn. 63, 4278 (1994). 10.1143/JPSJ.63.4278 LinkGoogle Scholar
  • 11 S. Negishi, H. Negishi, M. Sasaki, and M. Inoue, J. Phys. Soc. Jpn. 69, 2514 (2000). 10.1143/JPSJ.69.2514 LinkGoogle Scholar
  • 12 S. Negishi, H. Negishi, M. Sasaki, and M. Inoue, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 341, 69 (2000). 10.1080/10587250008026119 CrossrefGoogle Scholar
  • 13 B. Gu, Q. Song, and J. Ni, J. Appl. Phys. 85, 819 (1999). 10.1063/1.369166 CrossrefGoogle Scholar
  • 14 R. F. Egerton, Physical Principles of Electron Microscopy (Springer, New York, 2016). CrossrefGoogle Scholar
  • 15 K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, and K. Furuya, Microsc. Res. Tech. 71, 626 (2008). 10.1002/jemt.20597 CrossrefGoogle Scholar
  • 16 L.-M. Peng, G. Ren, S. L. Dudarev, and M. J. Whelan, Acta Crystallogr., Sect. A 52, 456 (1996). 10.1107/S010876739600089X CrossrefGoogle Scholar
  • 17 R. J. Wu, M. L. Odlyzko, and K. A. Mkhoyan, Ultramicroscopy 147, 8 (2014). 10.1016/j.ultramic.2014.05.007 CrossrefGoogle Scholar
  • 18 S. J. Pennycook, Ultramicroscopy 30, 58 (1989). 10.1016/0304-3991(89)90173-3 CrossrefGoogle Scholar