J. Phys. Soc. Jpn. 89, 083701 (2020) [5 Pages]
LETTERS

Site Selective Substitution and Charge Differentiation Around Ge Atom in FeGa3−xGex Proved by Ga-NQR with Super-cell Calculation

+ Affiliations
1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany2Ludwig-Maximilians-Universität München, 80539 Munich, Germany

In order to obtain the local charge disturbance around substituted Ge atom in a prototype system of ferromagnetic quantum criticality, FeGa3−xGex, we have measured 69,71Ga Nuclear Quadrupole Resonance (NQR) spectra for single crystals. We have observed the characteristic NQR spectra in the x = 0.13 crystal, reflecting the locally differentiated electronic environments due to the Ge substitution. The observed spectra are compared with the simulated spectra based on the density functional theory-based supercell calculation of the NQR frequencies for individual Ga sites around the substituted Ge atom. From this we have argued that 1) the doped electrons by the Ge substitution are not distributed uniformly but confined within 3–4 Å range from the Ge atom, and the electron density is differentiated among Ga sites near the Ge atom, and 2) the Ge atom is preferentially substituted for Ga1 sites.

©2020 The Physical Society of Japan

References

  • 1 G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001). 10.1103/RevModPhys.73.797 CrossrefGoogle Scholar
  • 2 P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186 (2008). 10.1038/nphys892 CrossrefGoogle Scholar
  • 3 H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007). 10.1103/RevModPhys.79.1015 CrossrefGoogle Scholar
  • 4 M. Brando, A. Kerkau, A. Todorova, Y. Yamada, P. Khuntia, T. Förster, U. Burkhard, M. Baenitz, and G. Kreiner, J. Phys. Soc. Jpn. 85, 084707 (2016). 10.7566/JPSJ.85.084707 LinkGoogle Scholar
  • 5 A. Steppke, R. Küchler, S. Lausberg, E. Lengye, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013). 10.1126/science.1230583 CrossrefGoogle Scholar
  • 6 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001). 10.1088/0953-8984/13/17/103 CrossrefGoogle Scholar
  • 7 H. Sakai, S. E. Brown, S. H. Baek, F. Ronning, E. D. Bauer, and J. D. Thompson, Phys. Rev. Lett. 107, 137001 (2011). 10.1103/PhysRevLett.107.137001 CrossrefGoogle Scholar
  • 8 H. Sakai, F. Ronning, J.-X. Zhu, N. Wakeham, H. Yasuoka, Y. Tokunaga, S. Kambe, E. D. Bauer, and J. D. Thompson, Phys. Rev. B 92, 121105(R) (2015). 10.1103/PhysRevB.92.121105 CrossrefGoogle Scholar
  • 9 J. Rusz, P. M. Oppeneer, N. J. Curro, R. R. Urbano, B.-L. Young, S. Lebègue, P. G. Pagliuso, L. D. Pham, E. D. Bauer, J. L. Sarrao, and Z. Fisk, Phys. Rev. B 77, 245124 (2008). 10.1103/PhysRevB.77.245124 CrossrefGoogle Scholar
  • 10 A. A. Gippius, S. V. Zhurenko, R. Hu, C. Petrovic, and M. Baenitz, Phys. Rev. B 97, 075118 (2018). 10.1103/PhysRevB.97.075118 CrossrefGoogle Scholar
  • 11 A. A. Gippius, V. Yu. Verchenko, A. V. Tkachev, N. E. Gervits, C. S. Lue, A. A. Tsirlin, N. Büttgen, W. Krätschmer, M. Baenitz, M. Shatruk, and A. V. Shevelkov, Phys. Rev. B 89, 104426 (2014). 10.1103/PhysRevB.89.104426 CrossrefGoogle Scholar
  • 12 M. Majumder, M. Wagner-Reetz, R. Cardoso-Gil, P. Gille, F. Steglich, Y. Grin, and M. Baenitz, Phys. Rev. B 93, 064410 (2016). 10.1103/PhysRevB.93.064410 CrossrefGoogle Scholar
  • 13 Y. Imai and A. Watanabe, Intermetallics 14, 722 (2006). 10.1016/j.intermet.2005.10.013 CrossrefGoogle Scholar
  • 14 N. Tsujii, H. Yamaoka, M. Matsunami, R. Eguchi, Y. Ishida, Y. Senba, H. Ohashi, S. Shin, T. Furubayashi, H. Abe, and H. Kitazawa, J. Phys. Soc. Jpn. 77, 024705 (2008). 10.1143/JPSJ.77.024705 LinkGoogle Scholar
  • 15 Y. Hadano, S. Narazu, M. A. Avila, T. Onimaru, and T. Takabatake, J. Phys. Soc. Jpn. 78, 013702 (2009). 10.1143/JPSJ.78.013702 LinkGoogle Scholar
  • 16 V. Y. Verchenko, M. S. Likhanov, M. A. Kirsanova, A. A. Gippius, A. V. Tkachev, N. E. Gervits, A. V. Galeeva, N. Büttgen, W. Kreatschmer, C. S. Lue, K. S. Okhotnikov, and A. V. Shevelkov, J. Solid State Chem. 194, 361 (2012). 10.1016/j.jssc.2012.05.041 CrossrefGoogle Scholar
  • 17 K. Umeo, Y. Hadano, S. Narazu, T. Onimaru, M. A. Avila, and T. Takabatake, Phys. Rev. B 86, 144421 (2012). 10.1103/PhysRevB.86.144421 CrossrefGoogle Scholar
  • 18 K. Bader and P. Gille, Cryst. Res. Technol. 55, 1900067 (2020). 10.1002/crat.201900067 CrossrefGoogle Scholar
  • 19 K. Koepernik, B. Velicky, R. Hayn, and H. Eschrig, Phys. Rev. B 55, 5717 (1997). 10.1103/PhysRevB.55.5717 CrossrefGoogle Scholar
  • 20 K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). 10.1103/PhysRevB.59.1743 CrossrefGoogle Scholar
  • 21 H. Yasuoka, T. Kubo, Y. Kishimoto, D. Kasinathan, M. Schmidt, B. Yan, Y. Zhang, H. Tou, C. Felser, A. P. Mackenzie, and M. Baenitz, Phys. Rev. Lett. 118, 236403 (2017). 10.1103/PhysRevLett.118.236403 CrossrefGoogle Scholar
  • 22 M. Pernpointner and P. Scwedtfeger, Chem. Phys. Lett. 295, 347 (1998). 10.1016/S0009-2614(98)00960-9 CrossrefGoogle Scholar
  • 23 P. Pyykkö, Mol. Phys. 106, 1965 (2008). 10.1080/00268970802018367 CrossrefGoogle Scholar
  • 24 E. Miranda and V. Dobrosavljevic, Rep. Prog. Phys. 68, 2337 (2005). 10.1088/0034-4885/68/10/R02 CrossrefGoogle Scholar
  • 25 R. Yamamoto, T. Furukawa, K. Miyagawa, T. Sasaki, K. Kanoda, and T. Itou, Phys. Rev. Lett. 124, 046404 (2020). 10.1103/PhysRevLett.124.046404 CrossrefGoogle Scholar
  • 26 R. Wang, A. Gebretsadik, S. Ubaid-Kassis, A. Schroeder, T. Vojta, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, I. Franke, J. S. Möller, and K. Page, Phys. Rev. Lett. 118, 267202 (2017). 10.1103/PhysRevLett.118.267202 CrossrefGoogle Scholar
  • 27 T. Westerkamp, M. Deppe, R. Küchler, M. Brando, C. Geibel, P. Gegenwart, A. P. Pikul, and F. Steglich, Phys. Rev. Lett. 102, 206404 (2009). 10.1103/PhysRevLett.102.206404 CrossrefGoogle Scholar