J. Phys. Soc. Jpn. 90, 023701 (2021) [4 Pages]
LETTERS

Theory of the Strain Engineering of Graphene Nanoconstrictions

+ Affiliations
1Faculty of Education and Human Studies, Akita University, Akita 010-8502, Japan2Department of Physics, Nara Women’s University, Nara 630-8506, Japan3Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Strain engineering is a key technology for using graphene in electronic devices; the strain-induced pseudo-gauge field reflects Dirac electrons, which opens the so-called conduction gap. Because strain accumulates in constrictions, graphene nanoconstrictions are a good platform for this technology. However, it is also known that Fabry–Pérot type quantum interference plays an important role in the electrical conduction of the graphene nanoconstrictions at low bias voltages. We argue that these two effects have different strain dependences; the pseudo-gauge field gives a “strain-even” [symmetric with respect to positive (tensile) and negative (compressive) strain] contribution, whereas the quantum interference gives a “strain-odd” (antisymmetric) contribution. As a result, a peculiar dependence of conductance on strain appears, even at typical room temperatures.

©2021 The Physical Society of Japan

References

  • 1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 10.1126/science.1102896 CrossrefGoogle Scholar
  • 2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). 10.1038/nature04233 CrossrefGoogle Scholar
  • 3 V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009). 10.1103/PhysRevLett.103.046801 CrossrefGoogle Scholar
  • 4 F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010). 10.1038/nphys1420 CrossrefGoogle Scholar
  • 5 F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov, Phys. Rev. B 81, 035408 (2010). 10.1103/PhysRevB.81.035408 CrossrefGoogle Scholar
  • 6 F. Guinea, Solid State Commun. 152, 1437 (2012). 10.1016/j.ssc.2012.04.019 CrossrefGoogle Scholar
  • 7 D. A. Bahamon and V. M. Pereira, Phys. Rev. B 88, 195416 (2013). 10.1103/PhysRevB.88.195416 CrossrefGoogle Scholar
  • 8 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008). 10.1126/science.1157996 CrossrefGoogle Scholar
  • 9 N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, and M. F. Crommie, Science 329, 544 (2010). 10.1126/science.1191700 CrossrefGoogle Scholar
  • 10 H. Tomori, A. Kanda, H. Goto, Y. Otsuka, K. Tsukagoshi, S. Moriyama, E. Watanabe, and D. Tsuya, Appl. Phys. Express 4, 075102 (2011). 10.1143/APEX.4.075102 CrossrefGoogle Scholar
  • 11 A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent, K. Komatsu, C. Li, R. Weil, A. Ralko, L. Marty, S. Guéron, N. Bendiab, H. Bouchiat, and V. Bouchiat, Nano Lett. 14, 5044 (2014). 10.1021/nl5016552 CrossrefGoogle Scholar
  • 12 J. Choi, H. J. Kim, M. C. Wang, J. Leem, W. P. King, and S. Nam, Nano Lett. 15, 4525 (2015). 10.1021/acs.nanolett.5b01036 CrossrefGoogle Scholar
  • 13 Y. Jiang, J. Mao, J. Duan, X. Lai, K. Watanabe, T. Taniguchi, and E. Y. Andrei, Nano Lett. 17, 2839 (2017). 10.1021/acs.nanolett.6b05228 CrossrefGoogle Scholar
  • 14 B. Pacakova, T. Verhagen, M. Bousa, U. Hübner, J. Vejpravova, M. Kalbac, and O. Frank, Sci. Rep. 7, 10003 (2017). 10.1038/s41598-017-10153-z CrossrefGoogle Scholar
  • 15 Y. Zhang, M. Heiranian, B. Janicek, Z. Budrikis, S. Zapperi, P. Y. Huang, H. T. Johnson, N. R. Aluru, J. W. Lyding, and N. Mason, Nano Lett. 18, 2098 (2018). 10.1021/acs.nanolett.8b00273 CrossrefGoogle Scholar
  • 16 C. C. Hsu, M. L. Teague, J. Q. Wang, and N.-C. Yeh, Sci. Adv. 6, eaat9488 (2020). 10.1126/sciadv.aat9488 CrossrefGoogle Scholar
  • 17 S. Timoshenko, J. N. Goodier, and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951) 3rd ed., p. 31. Google Scholar
  • 18 L. D. Landau, E. M. Lifshitz, A. M. Kosevich, J. B. Sykes, L. P. Pitaevskii, and W. H. Reid, Theory of Elasticity (Butterworth, Oxford, U.K., 1986) 3rd ed., p. 16. Google Scholar
  • 19 F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev. B 74, 195417 (2006). 10.1103/PhysRevB.74.195417 CrossrefGoogle Scholar
  • 20 A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008). 10.1103/PhysRevLett.101.156804 CrossrefGoogle Scholar
  • 21 M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 82, 115417 (2010). 10.1103/PhysRevB.82.115417 CrossrefGoogle Scholar
  • 22 P. Darancet, V. Olevano, and D. Mayou, Phys. Rev. Lett. 102, 136803 (2009). 10.1103/PhysRevLett.102.136803 CrossrefGoogle Scholar
  • 23 M. Yang and J. Wang, New J. Phys. 16, 113060 (2014). 10.1088/1367-2630/16/11/113060 CrossrefGoogle Scholar
  • 24 M. T. Allen, O. Shtanko, I. C. Fulga, J. I. J. Wang, D. Nurgaliev, K. Watanabe, T. Taniguchi, A. R. Akhmerov, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, Nano Lett. 17, 7380 (2017). 10.1021/acs.nanolett.7b03156 CrossrefGoogle Scholar
  • 25 N. F. Ahmad, K. Komatsu, T. Iwasaki, K. Watanabe, T. Taniguchi, H. Mizuta, Y. Wakayama, A. M. Hashim, Y. Morita, S. Moriyama, and S. Nakaharai, Sci. Rep. 9, 3031 (2019). 10.1038/s41598-019-39909-5 CrossrefGoogle Scholar
  • 26 H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002). 10.1103/PhysRevB.65.235412 CrossrefGoogle Scholar
  • 27 J. L. Mañes, Phys. Rev. B 76, 045430 (2007). 10.1103/PhysRevB.76.045430 CrossrefGoogle Scholar
  • 28 A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81.109 CrossrefGoogle Scholar
  • 29 T. Ando, Phys. Rev. B 44, 8017 (1991). 10.1103/PhysRevB.44.8017 CrossrefGoogle Scholar
  • 30 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996). 10.1143/JPSJ.65.1920 LinkGoogle Scholar
  •   (31) For armchair nano-ribbons, there are N dimers per unit cell, and for zigzag nano-ribbons, there are N zigzag chains.30) The actual widths of these wires are almost the same. Google Scholar
  • 32 K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev. Lett. 99, 036601 (2007). 10.1103/PhysRevLett.99.036601 CrossrefGoogle Scholar
  •   (33) We have also confirmed that in the presence of non-vanishing uxy, the nearly-perfect conduction of channels other than the lowest energy one is lost in the zigzag nanoribbon, as in the armchair case. Google Scholar
  •   (34) Here, we assumed the wider and narrower parts of the nanoconstriction consist of N = 81 and 25 nanoribbons, respectively, which are both semiconducting by themselves. Even if we use metallic N = 80 and 23 nanoribbons, the conductance shows a gap around \(\mathcal{E} = 0\), which may be due to the connectivity of the channels. Google Scholar
  •   (35) According to Ref. 22, the condition for well-defined Fabry–Pérot resonance is \(\lambda /W \gtrsim (3{\text{–}}5)\). In our case, this yields \(\mathcal{E}/t \lesssim (0.046{\text{–}}0.076)\). Therefore, the resonance in our system is not perfect. Google Scholar
  •   (36) We note that all the peaks in Fig. 3(d) do not shift in the same direction as strain increases. We attribute this to the existence of various QI modes in the present system. In real systems, the constriction’s shape also affects the QI. Further studies are required to clarify the details. Google Scholar
  • 37 C. Androulidakis, E. N. Koukaras, J. Parthenios, G. Kalosakas, K. Papagelis, and C. Galiotis, Sci. Rep. 5, 18219 (2015). 10.1038/srep18219 CrossrefGoogle Scholar
  • 38 S. Caneva, P. Gehring, V. M. García-Suárez, A. García-Fuente, D. Stefani, I. J. Olavarria-Contreras, J. Ferrer, C. Dekker, and H. S. J. van der Zant, Nat. Nanotechnol. 13, 1126 (2018). 10.1038/s41565-018-0258-0 CrossrefGoogle Scholar