J. Phys. Soc. Jpn. 90, 035001 (2021) [2 Pages]
SHORT NOTES

Possible Pressure-Induced Charge-Density Wave Quantum Critical Point in LuPd2In

+ Affiliations
1Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany2Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

We investigated the effect of application of hydrostatic pressure on the charge-density wave (CDW) state in Lu(Pt1−xPdx)2In by electrical-resistivity measurements. In Lu(Pt0.7Pd0.3)2In we find an increase of the CDW transition temperature upon application of pressure, which is not expected based on simple volume arguments, but in line with results of a theoretical work by Kim et al. [Phys. Rev. Lett. 125, 157001 (2020)]. Combining experimental and theoretical results suggests the existence of a CDW quantum critical point in stoichiometric LuPd2In around p ≈ 20 GPa.

©2021 The Physical Society of Japan

References

  • 1 P. Coleman and A. Schofield, Nature 433, 226 (2005). 10.1038/nature03279 CrossrefGoogle Scholar
  • 2 S. Sachdev, Nat. Phys. 4, 173 (2008). 10.1038/nphys894 CrossrefGoogle Scholar
  • 3 N. Mathur, F. Grosche, S. Julian, I. Walker, D. Freye, R. Haselwimmer, and G. Lonzarich, Nature 394, 39 (1998). 10.1038/27838 CrossrefGoogle Scholar
  • 4 A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Nature 407, 351 (2000). 10.1038/35030039 CrossrefGoogle Scholar
  • 5 O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Phys. Rev. Lett. 85, 626 (2000). 10.1103/PhysRevLett.85.626 CrossrefGoogle Scholar
  • 6 A. Steppke, R. Kuechler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Luehmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013). 10.1126/science.1230583 CrossrefGoogle Scholar
  • 7 B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth, A. Wang, Y. Chen, Z. Nie, R. Li, X. Lu, H. Lee, M. Smidman, F. Steglich, P. Coleman, and H. Yuan, Nature 579, 51 (2020). 10.1038/s41586-020-2052-z CrossrefGoogle Scholar
  • 8 T. Gruner, D. Jang, Z. Huesges, R. Cardoso-Gil, G. H. Fecher, M. M. Koza, O. Stockert, A. P. Mackenzie, M. Brando, and C. Geibel, Nat. Phys. 13, 967 (2017). 10.1038/nphys4191 CrossrefGoogle Scholar
  • 9 E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Nat. Phys. 2, 544 (2006). 10.1038/nphys360 CrossrefGoogle Scholar
  • 10 M. Kumar, V. K. Anand, C. Geibel, M. Nicklas, and Z. Hossain, Phys. Rev. B 81, 125107 (2010). 10.1103/PhysRevB.81.125107 CrossrefGoogle Scholar
  • 11 D. A. Zocco, J. J. Hamlin, K. Grube, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and M. B. Maple, Phys. Rev. B 91, 205114 (2015). 10.1103/PhysRevB.91.205114 CrossrefGoogle Scholar
  • 12 X. Zhu, W. Ning, L. Li, L. Ling, R. Zhang, J. Zhang, K. Wang, Y. Liu, L. Pi, Y. Ma, H. Du, M. Tian, Y. Sun, C. Petrovic, and Y. Zhang, Sci. Rep. 6, 26974 (2016). 10.1038/srep26974 CrossrefGoogle Scholar
  • 13 T. Gruner, D. Jang, A. Steppke, M. Brando, F. Ritter, C. Krellner, and C. Geibel, J. Phys.: Condens. Matter 26, 485002 (2014). 10.1088/0953-8984/26/48/485002 CrossrefGoogle Scholar
  • 14 H. Kim, J. H. Shim, S. Kim, J.-H. Park, K. Kim, and B. I. Min, Phys. Rev. Lett. 125, 157001 (2020). 10.1103/PhysRevLett.125.157001 CrossrefGoogle Scholar
  • 15 H. Kim, B. I. Min, and K. Kim, Phys. Rev. B 98, 144305 (2018). 10.1103/PhysRevB.98.144305 CrossrefGoogle Scholar
  • 16 M. Nicklas, in Pressure Probes, ed. A. Avella and F. Mancini (Springer, Berlin/Heidelberg, 2015) p. 173.10.1007/978-3-662-44133-6_6 CrossrefGoogle Scholar