J. Phys. Soc. Jpn. 90, 073001 (2021) [4 Pages]

Reentrance of the Disordered Phase in the Antiferromagnetic Ising Model on a Square Lattice with Longitudinal and Transverse Magnetic Fields

+ Affiliations
Department of Physics, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan

Motivated by recent experiments with Rydberg atoms in an optical tweezer array, we accurately map out the ground-state phase diagram of the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields using the quantum Monte Carlo method. For a small but nonzero transverse field, the transition longitudinal field is found to remain nearly constant. By scrutinizing the phase diagram, we uncover a narrow region where the system exhibits reentrant transitions between the disordered and antiferromagnetic phases with increasing transverse field. Our phase diagram provides a useful benchmark for quantum simulation of a Rydberg atom system.

©2021 The Physical Society of Japan


  • 1 R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 10.1007/BF02650179 CrossrefGoogle Scholar
  • 2 I. Buluta and F. Nori, Science 326, 108 (2009). 10.1126/science.1177838 CrossrefGoogle Scholar
  • 3 I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014). 10.1103/RevModPhys.86.153 CrossrefGoogle Scholar
  • 4 A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020). 10.1038/s41567-019-0733-z CrossrefGoogle Scholar
  • 5 H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 551, 579 (2017). 10.1038/nature24622 CrossrefGoogle Scholar
  • 6 A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 568, 207 (2019). 10.1038/s41586-019-1070-1 CrossrefGoogle Scholar
  • 7 E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul, D. A. Huse, P. Schauß, and W. S. Bakr, Phys. Rev. X 8, 021069 (2018). 10.1103/PhysRevX.8.021069 CrossrefGoogle Scholar
  • 8 V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L.-P. Henry, and A. M. Läuchli, Phys. Rev. X 8, 021070 (2018). 10.1103/PhysRevX.8.021070 CrossrefGoogle Scholar
  • 9 P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Läuchli, and A. Browaeys, arXiv:2012.12268. Google Scholar
  • 10 S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletic, and M. D. Lukin, arXiv:2012.12281. Google Scholar
  • 11 D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletic, and M. D. Lukin, Science 371, 1355 (2021). 10.1126/science.abg2530 CrossrefGoogle Scholar
  • 12 S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science 365, 775 (2019). 10.1126/science.aav9105 CrossrefGoogle Scholar
  • 13 C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Nat. Phys. 14, 745 (2018). 10.1038/s41567-018-0137-5 CrossrefGoogle Scholar
  • 14 C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Phys. Rev. B 98, 155134 (2018). 10.1103/PhysRevB.98.155134 CrossrefGoogle Scholar
  • 15 A. J. A. James, R. M. Konik, and N. J. Robinson, Phys. Rev. Lett. 122, 130603 (2019). 10.1103/PhysRevLett.122.130603 CrossrefGoogle Scholar
  • 16 N. Shibata, N. Yoshioka, and H. Katsura, Phys. Rev. Lett. 124, 180604 (2020). 10.1103/PhysRevLett.124.180604 CrossrefGoogle Scholar
  • 17 S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, U.K., 2011) 2nd ed. CrossrefGoogle Scholar
  • 18 S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer, Berlin/Heidelberg, 2013). CrossrefGoogle Scholar
  • 19 P. Pfeuty, Ann. Phys. 57, 79 (1970). 10.1016/0003-4916(70)90270-8 CrossrefGoogle Scholar
  • 20 F. Robicheaux and J. V. Hernández, Phys. Rev. A 72, 063403 (2005). 10.1103/PhysRevA.72.063403 CrossrefGoogle Scholar
  • 21 H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002). 10.1103/PhysRevE.66.066110 CrossrefGoogle Scholar
  • 22 R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. Lett. 84, 4457 (2000). 10.1103/PhysRevLett.84.4457 CrossrefGoogle Scholar
  • 23 R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001). 10.1103/PhysRevB.63.224401 CrossrefGoogle Scholar
  • 24 P. Sen, Phys. Rev. E 63, 016112 (2000). 10.1103/PhysRevE.63.016112 CrossrefGoogle Scholar
  • 25 O. F. de Alcantara Bonfim, B. Boechat, and J. Florencio, Phys. Rev. E 99, 012122 (2019). 10.1103/PhysRevE.99.012122 CrossrefGoogle Scholar
  • 26 M. A. Novotny and D. P. Landau, J. Magn. Magn. Mater. 54–57, 685 (1986). 10.1016/0304-8853(86)90210-6 CrossrefGoogle Scholar
  • 27 A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and V. O. Cheranovskii, Phys. Rev. B 68, 214406 (2003). 10.1103/PhysRevB.68.214406 CrossrefGoogle Scholar
  • 28 Y. Motoyama, K. Yoshimi, A. Masaki-Kato, T. Kato, and N. Kawashima, Comput. Phys. Commun. 264, 107944 (2021). 10.1016/j.cpc.2021.107944 CrossrefGoogle Scholar
  • 29 J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press, Cambridge, U.K., 2016). CrossrefGoogle Scholar
  • 30 S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, J. Stat. Phys. 157, 869 (2014). 10.1007/s10955-014-1042-7 CrossrefGoogle Scholar
  • 31 Y. Kato and T. Misawa, Phys. Rev. B 92, 174419 (2015). 10.1103/PhysRevB.92.174419 CrossrefGoogle Scholar
  • 32 K. Harada, Phys. Rev. E 84, 056704 (2011). 10.1103/PhysRevE.84.056704 CrossrefGoogle Scholar
  • 33 H. Rieger and N. Kawashima, Eur. Phys. J. B 9, 233 (1999). 10.1007/s100510050761 CrossrefGoogle Scholar
  • 34 C. Domb, Adv. Phys. 9, 245 (1960). 10.1080/00018736000101199 CrossrefGoogle Scholar
  • 35 J. Wurtz and A. Polkovnikov, Phys. Rev. B 101, 195138 (2020). 10.1103/PhysRevB.101.195138 CrossrefGoogle Scholar
  • 36 P. Lajkó and F. Iglói, Phys. Rev. B 103, 174404 (2021). 10.1103/PhysRevB.103.174404 CrossrefGoogle Scholar
  • 37 F. Iglói, Phys. Rev. B 40, 2362 (1989). 10.1103/PhysRevB.40.2362 CrossrefGoogle Scholar
  • 38 Y.-P. Lin, Y.-J. Kao, P. Chen, and Y.-C. Lin, Phys. Rev. B 96, 064427 (2017). 10.1103/PhysRevB.96.064427 CrossrefGoogle Scholar
  • 39 P. Lajkó, J.-C. A. d’Auriac, H. Rieger, and F. Iglói, Phys. Rev. B 101, 024203 (2020). 10.1103/PhysRevB.101.024203 CrossrefGoogle Scholar
  • 40 R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Phys. Rev. Lett. 124, 103601 (2020). 10.1103/PhysRevLett.124.103601 CrossrefGoogle Scholar
  • 41 N. Kellermann, M. Schmidt, and F. M. Zimmer, Phys. Rev. E 99, 012134 (2019). 10.1103/PhysRevE.99.012134 CrossrefGoogle Scholar
  • 42 X. Wang, M. H. Christensen, E. Berg, and R. M. Fernandes, arXiv:2102.11985. Google Scholar
  • 43 R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Proc. Natl. Acad. Sci. U.S.A. 118, e2015785118 (2021). 10.1073/pnas.2015785118 CrossrefGoogle Scholar