- Full text:
- PDF (eReader) / PDF (Download) (375 kB)
Motivated by recent experiments with Rydberg atoms in an optical tweezer array, we accurately map out the ground-state phase diagram of the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields using the quantum Monte Carlo method. For a small but nonzero transverse field, the transition longitudinal field is found to remain nearly constant. By scrutinizing the phase diagram, we uncover a narrow region where the system exhibits reentrant transitions between the disordered and antiferromagnetic phases with increasing transverse field. Our phase diagram provides a useful benchmark for quantum simulation of a Rydberg atom system.
Quantum effects in many-body systems have been the subject of intensive research. Accurate simulation of quantum systems can reveal novel phases and phase transitions. Although numerical simulation on a classical computer is useful, the number of tractable models is limited because of the exponential growth of the Hilbert space. An alternative approach is to use highly controllable devices, namely, analog quantum simulators, to emulate quantum many-body systems.1–3)
Quantum simulators using Rydberg atoms in an optical tweezer array have attracted growing interest owing to rapid technological advances.4) Optical tweezers allow one to hold and move each atom precisely. In addition, the distance between atoms is large enough that individual atoms can be observed. Because dipole–dipole interactions between Rydberg atoms are much stronger than those between ground-state atoms, one can conduct experiments at relatively high temperatures without evaporative cooling, and the typical time scale of the real-time dynamics is roughly 1000 times faster than that of ultracold atoms in optical lattices.
Owing to these advantages, recent experiments using Rydberg atom arrays5–12) have successfully observed various interesting many-body phenomena. For example, quantum phase transitions and nonequilibrium dynamics5,6) have been observed in Rydberg systems that realize the one-dimensional Ising model with longitudinal and transverse magnetic fields. Furthermore, symmetry-protected topological phases have been identified in a simulator that imitates the Su–Schrieffer–Heeger chain.12) The simulation of not only systems in one spatial dimension but also those in two spatial dimensions is feasible.7,8) Very recently, the number of controllable atoms exceeded 200.9,10)
The recent development of quantum simulation experiments has motivated a revival of theoretical research on fundamental quantum spin models. In particular, the study of nonequilibrium dynamics is among the most active fields. For instance, the observation of certain states that exhibit anomalously slow thermalization5,11) has stimulated research on quantum many-body scars.13–16) There are many open questions on how quantum information propagates in terms of the real-time dynamics of the quantum Ising model.7,8)
It is essential to understand the ground-state properties of static systems before tackling these unresolved problems. The Ising model has served as a textbook example of how to describe a phase transition in statistical physics17,18) because of its simplicity and solvability.19) Rydberg systems are suitable for realizing the quantum Ising model. In these systems, the longitudinal and transverse fields can be controlled by frequency detuning and the Rabi frequency of the laser, respectively.20) The ground-state phase diagrams of quantum Ising models on several lattices have been extensively studied using the quantum Monte Carlo (QMC) method.21–23)
Although many Ising models have been analyzed, the precise ground-state properties of the mixed-field Ising model have yet to be explored on the simple square lattice. The model is so primitive that detailed analysis has been overlooked. In one spatial dimension, the precise phase diagram of the mixed-field Ising model is determined by the exact diagonalization (ED),24,25) QMC,26) and density matrix renormalization group27) methods. By contrast, in two spatial dimensions, only a schematic phase diagram for a few dozen sites has been drawn in a recent ED study.8)
In this letter, we draw the ground-state phase diagram of the antiferromagnetic Ising model on a square lattice with both longitudinal and transverse fields. The Hamiltonian of the mixed-field Ising model is defined as
We used the QMC method to draw the ground-state phase diagram of the mixed-field Ising model on a square lattice. We adopted the Discrete Space Quantum Systems Solver (DSQSS) library,28) which implements the directed loop algorithm.29) We chose the periodic–periodic boundary condition and considered the system sizes
To characterize each phase, we calculated the staggered magnetic susceptibility,31) which is defined as
We performed finite-size scaling analysis based on Bayesian scaling analysis32) to determine the phase boundary between the antiferromagnetic and disordered phases at zero temperature. We set the inverse temperature β to be proportional to the linear system size L because the dynamical exponent would satisfy
Figure 1. (Color online) Finite-size scaling analysis at
We obtain the ground-state phase diagram shown in Fig. 2. At
Figure 2. (Color online) Ground-state phase diagram of the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields. The statistical error is smaller than the symbol size. We obtained the transition point at
Figure 3 shows the magnified ground-state phase diagram for
Figure 3. (Color online) Magnified ground-state phase diagram near
Unconventional reentrant behavior has already been observed in the MF approximation,27) and our results show that it is maintained even in two spatial dimensions. Here we briefly review the MF results on the tilt of the spins and the variation of the longitudinal transition field in the presence of a small transverse field. The MF energy per site is given as
As we see below, subtle competition between the MF mechanism and quantum fluctuations determines whether reentrance occurs. The ground state at
In conclusion, we studied the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields using the QMC method. We determined the phase boundary between the antiferromagnetic and disordered phases by finite-size scaling analysis and found that the critical field
Our phase diagram would be helpful for analog quantum simulation of Rydberg systems. Although it is challenging to detect the narrow reentrant region on a square lattice, a nearly intact transition field
In three spatial dimensions, the MF critical exponent will be exact because the value
Acknowledgments
The authors acknowledge fruitful discussions with T. Uno. This work was financially supported by JSPS KAKENHI (Grants Nos. 18K03492 and 18H05228), by JST CREST (Grant No. JPMJCR1673), and by MEXT Q-LEAP (Grant No. JPMXS0118069021). The numerical computations were performed on computers at the Yukawa Institute Computer Facility and on computers at the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo.
References
- 1 R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 10.1007/BF02650179 Crossref, Google Scholar
- 2 I. Buluta and F. Nori, Science 326, 108 (2009). 10.1126/science.1177838 Crossref, Google Scholar
- 3 I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014). 10.1103/RevModPhys.86.153 Crossref, Google Scholar
- 4 A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020). 10.1038/s41567-019-0733-z Crossref, Google Scholar
- 5 H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 551, 579 (2017). 10.1038/nature24622 Crossref, Google Scholar
- 6 A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 568, 207 (2019). 10.1038/s41586-019-1070-1 Crossref, Google Scholar
- 7 E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul, D. A. Huse, P. Schauß, and W. S. Bakr, Phys. Rev. X 8, 021069 (2018). 10.1103/PhysRevX.8.021069 Crossref, Google Scholar
- 8 V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L.-P. Henry, and A. M. Läuchli, Phys. Rev. X 8, 021070 (2018). 10.1103/PhysRevX.8.021070 Crossref, Google Scholar
- 9 P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Läuchli, and A. Browaeys, arXiv:2012.12268. Google Scholar
- 10 S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletic, and M. D. Lukin, arXiv:2012.12281. Google Scholar
- 11 D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletic, and M. D. Lukin, Science 371, 1355 (2021). 10.1126/science.abg2530 Crossref, Google Scholar
- 12 S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science 365, 775 (2019). 10.1126/science.aav9105 Crossref, Google Scholar
- 13 C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Nat. Phys. 14, 745 (2018). 10.1038/s41567-018-0137-5 Crossref, Google Scholar
- 14 C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Phys. Rev. B 98, 155134 (2018). 10.1103/PhysRevB.98.155134 Crossref, Google Scholar
- 15 A. J. A. James, R. M. Konik, and N. J. Robinson, Phys. Rev. Lett. 122, 130603 (2019). 10.1103/PhysRevLett.122.130603 Crossref, Google Scholar
- 16 N. Shibata, N. Yoshioka, and H. Katsura, Phys. Rev. Lett. 124, 180604 (2020). 10.1103/PhysRevLett.124.180604 Crossref, Google Scholar
- 17 S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, U.K., 2011) 2nd ed. Crossref, Google Scholar
- 18 S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer, Berlin/Heidelberg, 2013). Crossref, Google Scholar
- 19 P. Pfeuty, Ann. Phys. 57, 79 (1970). 10.1016/0003-4916(70)90270-8 Crossref, Google Scholar
- 20 F. Robicheaux and J. V. Hernández, Phys. Rev. A 72, 063403 (2005). 10.1103/PhysRevA.72.063403 Crossref, Google Scholar
- 21 H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002). 10.1103/PhysRevE.66.066110 Crossref, Google Scholar
- 22 R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. Lett. 84, 4457 (2000). 10.1103/PhysRevLett.84.4457 Crossref, Google Scholar
- 23 R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001). 10.1103/PhysRevB.63.224401 Crossref, Google Scholar
- 24 P. Sen, Phys. Rev. E 63, 016112 (2000). 10.1103/PhysRevE.63.016112 Crossref, Google Scholar
- 25 O. F. de Alcantara Bonfim, B. Boechat, and J. Florencio, Phys. Rev. E 99, 012122 (2019). 10.1103/PhysRevE.99.012122 Crossref, Google Scholar
- 26 M. A. Novotny and D. P. Landau, J. Magn. Magn. Mater. 54–57, 685 (1986). 10.1016/0304-8853(86)90210-6 Crossref, Google Scholar
- 27 A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and V. O. Cheranovskii, Phys. Rev. B 68, 214406 (2003). 10.1103/PhysRevB.68.214406 Crossref, Google Scholar
- 28 Y. Motoyama, K. Yoshimi, A. Masaki-Kato, T. Kato, and N. Kawashima, Comput. Phys. Commun. 264, 107944 (2021). 10.1016/j.cpc.2021.107944 Crossref, Google Scholar
- 29 J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press, Cambridge, U.K., 2016). Crossref, Google Scholar
- 30 S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, J. Stat. Phys. 157, 869 (2014). 10.1007/s10955-014-1042-7 Crossref, Google Scholar
- 31 Y. Kato and T. Misawa, Phys. Rev. B 92, 174419 (2015). 10.1103/PhysRevB.92.174419 Crossref, Google Scholar
- 32 K. Harada, Phys. Rev. E 84, 056704 (2011). 10.1103/PhysRevE.84.056704 Crossref, Google Scholar
- 33 H. Rieger and N. Kawashima, Eur. Phys. J. B 9, 233 (1999). 10.1007/s100510050761 Crossref, Google Scholar
- 34 C. Domb, Adv. Phys. 9, 245 (1960). 10.1080/00018736000101199 Crossref, Google Scholar
- 35 J. Wurtz and A. Polkovnikov, Phys. Rev. B 101, 195138 (2020). 10.1103/PhysRevB.101.195138 Crossref, Google Scholar
- 36 P. Lajkó and F. Iglói, Phys. Rev. B 103, 174404 (2021). 10.1103/PhysRevB.103.174404 Crossref, Google Scholar
- 37 F. Iglói, Phys. Rev. B 40, 2362 (1989). 10.1103/PhysRevB.40.2362 Crossref, Google Scholar
- 38 Y.-P. Lin, Y.-J. Kao, P. Chen, and Y.-C. Lin, Phys. Rev. B 96, 064427 (2017). 10.1103/PhysRevB.96.064427 Crossref, Google Scholar
- 39 P. Lajkó, J.-C. A. d’Auriac, H. Rieger, and F. Iglói, Phys. Rev. B 101, 024203 (2020). 10.1103/PhysRevB.101.024203 Crossref, Google Scholar
- 40 R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Phys. Rev. Lett. 124, 103601 (2020). 10.1103/PhysRevLett.124.103601 Crossref, Google Scholar
- 41 N. Kellermann, M. Schmidt, and F. M. Zimmer, Phys. Rev. E 99, 012134 (2019). 10.1103/PhysRevE.99.012134 Crossref, Google Scholar
- 42 X. Wang, M. H. Christensen, E. Berg, and R. M. Fernandes, arXiv:2102.11985. Google Scholar
- 43 R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Proc. Natl. Acad. Sci. U.S.A. 118, e2015785118 (2021). 10.1073/pnas.2015785118 Crossref, Google Scholar