J. Phys. Soc. Jpn. 90, 093703 (2021) [4 Pages]
LETTERS

Spin-flop Phase in a Honeycomb Antiferromagnet Mn0.84Mg0.16TiO3

+ Affiliations
1Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan2Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan3Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan4Meson Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan5Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan6Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.7Department of Physics, Korea University, Seoul 02841, South Korea

The spin-flop phase of a honeycomb antiferromagnet of Mn0.84Mg0.16TiO3 has been studied under magnetic field along normal direction to the honeycomb plane by neutron scattering. With increasing a magnetic field from 0 to 5 T, the inelastic scattering intensity increased by 1.5 times at (1 0 0), where the magnetic structure was found to be collinear-antiferromagnet with the spin parallel to [1 1 0] direction. The spin direction is consistent with a 1.5 times increase of the inelastic intensity. The negligible energy difference between K and K′ points suggests small values for both Dzyaloshinskii–Moriya interaction and bond-dependent symmetric anisotropic exchange interaction in this material.

©2021 The Physical Society of Japan

References

  • 1 J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Phys. Rev. B 94, 075401 (2016). 10.1103/PhysRevB.94.075401 CrossrefGoogle Scholar
  • 2 S. K. Kim, H. Ochoa, R. Zarzuela, and Y. Tserkovnyak, Phys. Rev. Lett. 117, 227201 (2016). 10.1103/PhysRevLett.117.227201 CrossrefGoogle Scholar
  • 3 S. A. Owerre, J. Phys.: Condens. Matter 28, 386001 (2016). 10.1088/0953-8984/28/38/386001 CrossrefGoogle Scholar
  • 4 L. Chen, J.-H. Chung, B. Gao, T. Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, Phys. Rev. X 8, 041028 (2018). 10.1103/PhysRevX.8.041028 CrossrefGoogle Scholar
  • 5 B. Yuan, I. Khait, G.-J. Shu, F. C. Chou, M. B. Stone, J. P. Clancy, A. Paramekanti, and Y.-J. Kim, Phys. Rev. X 10, 011062 (2020). 10.1103/PhysRevX.10.011062 CrossrefGoogle Scholar
  • 6 S. Hayami, H. Kusunose, and Y. Motome, J. Phys. Soc. Jpn. 85, 053705 (2016). 10.7566/JPSJ.85.053705 LinkGoogle Scholar
  • 7 N. Okuma, Phys. Rev. Lett. 119, 107205 (2017). 10.1103/PhysRevLett.119.107205 CrossrefGoogle Scholar
  • 8 S. A. Owerre, J. Appl. Phys. 121, 223904 (2017). 10.1063/1.4985615 CrossrefGoogle Scholar
  • 9 T. Matsumoto and S. Hayami, Phys. Rev. B 101, 224419 (2020). 10.1103/PhysRevB.101.224419 CrossrefGoogle Scholar
  • 10 H. Toyosaki, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 93, 072507 (2008). 10.1063/1.2975373 CrossrefGoogle Scholar
  • 11 N. Mufti, G. R. Blake, M. Mostovoy, S. Riyadi, A. A. Nugroho, and T. T. M. Palstra, Phys. Rev. B 83, 104416 (2011). 10.1103/PhysRevB.83.104416 CrossrefGoogle Scholar
  • 12 H. J. Silverstein, E. Skoropata, P. M. Sarte, C. Mauws, A. A. Aczel, E. S. Choi, J. van Lierop, C. R. Wiebe, and H. Zhou, Phys. Rev. B 93, 054416 (2016). 10.1103/PhysRevB.93.054416 CrossrefGoogle Scholar
  • 13 R. K. Maurya, N. Singh, S. K. Pandey, and R. Bindu, Europhys. Lett. 110, 27007 (2015). 10.1209/0295-5075/110/27007 CrossrefGoogle Scholar
  • 14 Y. Yamaguchi, T. Nakano, Y. Nozue, and T. Kimura, Phys. Rev. Lett. 108, 057203 (2012). 10.1103/PhysRevLett.108.057203 CrossrefGoogle Scholar
  • 15 G. Shirane, S. J. Pickart, and Y. Ishikawa, J. Phys. Soc. Jpn. 14, 1352 (1959). 10.1143/JPSJ.14.1352 LinkGoogle Scholar
  • 16 J. Akimitsu and Y. Ishikawa, J. Phys. Soc. Jpn. 42, 462 (1977). 10.1143/JPSJ.42.462 LinkGoogle Scholar
  • 17 Y. Todate, Y. Ishikawa, K. Tajima, S. Tomiyoshi, and H. Takei, J. Phys. Soc. Jpn. 55, 4464 (1986). 10.1143/JPSJ.55.4464 LinkGoogle Scholar
  • 18 A. Fukaya, A. Ito, A. H. Katori, and T. Goto, J. Phys. Soc. Jpn. 69, 3027 (2000). 10.1143/JPSJ.69.3027 LinkGoogle Scholar
  • 19 B. Winn, U. Filges, V. O. Garlea, M. Graves-Brook, M. Hagen, C. Jiang, M. Kenzelmann, L. Passell, S. M. Shapiro, X. Tong, and I. Zaliznyak, EPJ Web Conf. 83, 03017 (2015). 10.1051/epjconf/20158303017 CrossrefGoogle Scholar
  • 20 I. A. Zaliznyak, A. T. Savici, V. Ovidiu Garlea, B. Winn, U. Filges, J. Schneeloch, J. M. Tranquada, G. Gu, A. Wang, and C. Petrovic, J. Phys.: Conf. Ser. 862, 012030 (2017). 10.1088/1742-6596/862/1/012030 CrossrefGoogle Scholar
  • 21 I. Y. Hwang, K. H. Lee, J.-H. Chung, K. Ikeuchi, V. O. Garlea, H. Yamauchi, M. Akatsu, and S. Shamoto, J. Phys. Soc. Jpn. 90, 064708 (2021). 10.7566/JPSJ.90.064708 LinkGoogle Scholar
  • 22 H. Takei, J. Mater. Sci. 16, 1310 (1981). 10.1007/BF01033847 CrossrefGoogle Scholar
  • 23 J. Rodríguez-Carvajal, Physica B 192, 55 (1993). 10.1016/0921-4526(93)90108-I CrossrefGoogle Scholar
  • 24 A. S. Wills, Physica B 276–278, 680 (2000). 10.1016/S0921-4526(99)01722-6 CrossrefGoogle Scholar
  • 25 S. Toth and B. Lake, J. Phys.: Condens. Matter 27, 166002 (2015). 10.1088/0953-8984/27/16/166002 CrossrefGoogle Scholar
  • 26 K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 10.1107/S0021889811038970 CrossrefGoogle Scholar
  • 27 G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover, New York, 1997) p. 165. Google Scholar
  • 28 A. Rycerz, J. Tworzydo, and C. W. J. Beenakker, Nat. Phys. 3, 172 (2007). 10.1038/nphys547 CrossrefGoogle Scholar