J. Phys. Soc. Jpn. 90, 113702 (2021) [4 Pages]
LETTERS

Giant Optical Anisotropy in High Temperature Superconducting Cuprate Bi2Sr2CaCu2O8+δ

+ Affiliations
1Department of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan2Department of Mathematics, Shanghai University, Shanghai 200444, China3Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina, Kanagawa 243-0435, Japan4Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan5Department of Biophysics, Kyoto University, Kyoto 606-8502, Japan6Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan7Research Institute for Chemical Process Technology, National Institute of Advanced Industrial and Science and Technology, Sendai 983-8551, Japan8Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan9Global Consolidated Research Institute for Science Wisdom, Waseda University, Shinjuku, Tokyo 169-8555, Japan

Transmitted light measurements in ultraviolet and visible light regions have revealed giant optical anisotropy at 298 K in the high-Tc superconducting cuprates Bi2Sr2CaCu2O8+δ crystals with optimal doping. We employed a generalized-high-accuracy universal polarimeter to measure linear birefringence and linear dichroism in ultrathin (001) single crystals of Bi2Sr2CaCu2O8+δ. In particular, remarkable anomalies in linear birefringence and linear dichroism were observed at 345 and 330 nm, respectively. These results explicitly suggest that the large optical anisotropy should be carefully considered when discussing the symmetry breaking of this compound, based on the experimental results of optical measurements.

©2021 The Physical Society of Japan

References

  • 1 H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzaki, Nature 382, 51 (1996). 10.1038/382051a0 CrossrefGoogle Scholar
  • 2 D. S. Marshall, D. S. Dessau, A. G. Loeser, C.-H. Park, A. Y. Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996). 10.1103/PhysRevLett.76.4841 CrossrefGoogle Scholar
  • 3 Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998). 10.1103/PhysRevLett.80.149 CrossrefGoogle Scholar
  • 4 (Supplemental Material) Controversial results for symmetry breakings in Bi2212 crystals. Google Scholar
  • 5 A. Kaminski, S. Rosenkranz, H. M. Fretwell, J. C. Campuzano, Z. Li, H. Raffy, W. G. Cullen, H. You, C. G. Olson, C. M. Varma, and H. Hochst, Nature 416, 610 (2002). 10.1038/416610a CrossrefGoogle Scholar
  • 6 S. De Almeida-Didry, Y. Sidis, V. Balédent, F. Giovannelli, I. Monot-Laffez, and P. Bourges, Phys. Rev. B 86, 020504(R) (2012). 10.1103/PhysRevB.86.020504 CrossrefGoogle Scholar
  • 7 J. Kobayashi, T. Asahi, M. Sakurai, M. Takahashi, K. Okubo, and Y. Enomoto, Phys. Rev. B 53, 11784 (1996). 10.1103/PhysRevB.53.11784 CrossrefGoogle Scholar
  • 8 M. Kubota, K. Ono, Y. Oohara, and H. Eisaki, J. Phys. Soc. Jpn. 75, 053706 (2006). 10.1143/JPSJ.75.053706 LinkGoogle Scholar
  • 9 L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, New York, 2004) 2nd ed. CrossrefGoogle Scholar
  • 10 J. A. Schellman and H. P. Jensen, Chem. Rev. 87, 1359 (1987). 10.1021/cr00082a004 CrossrefGoogle Scholar
  • 11 Y. Shindo, M. Nishiro, and S. Maeda, Biopolymers 30, 405 (1990). 10.1002/bip.360300318 CrossrefGoogle Scholar
  • 12 M. Tanaka, N. Nakamura, H. Koshima, and T. Asahi, J. Phys. D 45, 175303 (2012). 10.1088/0022-3727/45/17/175303 CrossrefGoogle Scholar
  • 13 K. Nakagawa, H. H. Lovelady, Y. Tanaka, M. Tanaka, M. Yamato, and T. Asahi, Chem. Commun. 50, 15086 (2014). 10.1039/C3CC49328H CrossrefGoogle Scholar
  • 14 A. Takanabe, M. Tanaka, K. Johmoto, H. Uekusa, T. Mori, H. Koshima, and T. Asahi, J. Am. Chem. Soc. 138, 15066 (2016). 10.1021/jacs.6b09633 CrossrefGoogle Scholar
  • 15 K. Ishikawa, Y. Terasawa, M. Tanaka, and T. Asahi, J. Phys. Chem. Solids 104, 257 (2017). 10.1016/j.jpcs.2017.01.024 CrossrefGoogle Scholar
  • 16 K. Nakagawa, A. T. Martin, S. M. Nichols, V. L. Murphy, B. Kahr, and T. Asahi, J. Phys. Chem. C 121, 25494 (2017). 10.1021/acs.jpcc.7b08831 CrossrefGoogle Scholar
  • 17 K. Nakagawa and T. Asahi, Sci. Rep. 9, 18453 (2019). 10.1038/s41598-019-54174-2 CrossrefGoogle Scholar
  • 18 R. Kuroda, T. Harada, and Y. Shindo, Rev. Sci. Instrum. 72, 3802 (2001). 10.1063/1.1400157 CrossrefGoogle Scholar
  • 19 O. Arteaga, J. Freudenthal, B. L. Wang, and B. Kahr, Appl. Opt. 51, 6805 (2012). 10.1364/AO.51.006805 CrossrefGoogle Scholar
  • 20 S. Nichols, O. Arteaga, A. Martin, and B. Kahr, J. Opt. Soc. Am. A 32, 2049 (2015). 10.1364/JOSAA.32.002049 CrossrefGoogle Scholar
  • 21 Y. Matsui, H. Maeda, Y. Tanaka, and S. Horiuchi, Jpn. J. Appl. Phys. 27, L372 (1988). 10.1143/JJAP.27.L372 CrossrefGoogle Scholar
  • 22 H. Ding, A. F. Bellman, J. C. Campuzano, M. Randeria, M. R. Norman, T. Yokoya, T. Takahashi, H. K. Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G. P. Brivio, Phys. Rev. Lett. 76, 1533 (1996). 10.1103/PhysRevLett.76.1533 CrossrefGoogle Scholar
  • 23 S. Tajima, G. D. Gu, S. Miyamoto, A. Odagawa, and N. Koshizuka, Phys. Rev. B 48, 16164 (1993). 10.1103/PhysRevB.48.16164 CrossrefGoogle Scholar
  • 24 J. J. Tu, C. C. Homes, G. D. Gu, and M. Strongin, Physica B 316–317, 324 (2002). 10.1016/S0921-4526(02)00498-2 CrossrefGoogle Scholar
  • 25 (Supplemental Material) Powder x-ray diffraction (XRD) measurement and superconducting transition temperature measurement of the Bi2212 crystal used in this study. Google Scholar
  • 26 (Supplemental Material) The measurement theory of G-HAUP. Google Scholar
  • 27 (Supplemental Material) Evaluation of the measurement error in LB and LD in the G-HAUP optical system of this study. Google Scholar
  • 28 H. L. Liu, M. A. Quijada, A. M. Zibold, Y. D. Yoon, D. B. Tanner, G. Cao, J. E. Crow, H. Berger, G. Margaritondo, L. Forró, O. Beom-Hoan, J. T. Markert, R. J. Kelly, and M. Onellion, J. Phys.: Condens. Matter 11, 239 (1999). 10.1088/0953-8984/11/1/020 CrossrefGoogle Scholar
  • 29 H. L. Liu, M. A. Quijada, D. B. Tanner, H. Berger, and G. Margaritondo, Eur. Phys. J. B 8, 47 (1999). 10.1007/s100510050667 CrossrefGoogle Scholar
  • 30 S. V. Borisenko, A. A. Kordyuk, A. Koitzsch, M. Knupfer, J. Fink, H. Berger, and C. T. Lin, Nature 431, 1 (2004). 10.1038/nature02931 CrossrefGoogle Scholar