J. Phys. Soc. Jpn. 90, 124003 (2021) [11 Pages]
FULL PAPERS
- Full text:
- PDF (eReader) / PDF (Download) (1556 kB)
Received January 14, 2021; Accepted November 4, 2021; Published November 30, 2021
Numerical experiments on the Heisenberg model of headless spins are performed for the two-dimensional triangular lattice. The assumed model is with the two-body interaction preferring twisted alignment, which tends to exhibit sublattice order at the absolute zero. A possible phase transition is suggested based on prolonged Monte Carlo steps necessary for equilibration, a pronounced peak of heat capacity, and local violation of the sixfold symmetry inherent to the lattice. The entropy gain associated with the heat capacity peak implies that the transition accompanies the disordering over three spin orientations defined locally.
©2022 The Physical Society of Japan
References
- 1 J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Oxford University Press, New York, 1992). Google Scholar
- 2 H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, New York, 2010) Crossref, Google Scholar
- 3 J. A. Pople and F. E. Karasz, J. Phys. Chem. Solids 18, 28 (1961). 10.1016/0022-3697(61)90080-4 Crossref, Google Scholar
- 4 F. E. Karasz and J. A. Pople, J. Phys. Chem. Solids 20, 294 (1961). 10.1016/0022-3697(61)90017-8 Crossref, Google Scholar
- 5 L. M. Amzel and L. N. Becka, J. Phys. Chem. Solids 30, 521 (1969) [Errata 30, 2495 (1969)]. 10.1016/0022-3697(69)90008-0 Crossref, Google Scholar
- 6 Y. Nakazawa, Y. Yamamura, S. Kutsumizu, and K. Saito, J. Phys. Soc. Jpn. 81, 094601 (2012). 10.1143/JPSJ.81.094601 Link, Google Scholar
- 7 C. Dressel, F. Liu, M. Prehm, X. Zeng, G. Ungar, and C. Tschierske, Angew. Chem., Int. Ed. 53, 13115 (2014). 10.1002/anie.201406907 Crossref, Google Scholar
- 8 K. Saito, Y. Yamamura, Y. Miwa, and S. Kutsumizu, Phys. Chem. Chem. Phys. 18, 3280 (2016). 10.1039/C5CP06658A Crossref, Google Scholar
- 9 K. Saito, M. Hishida, and Y. Yamamura, J. Phys. Soc. Jpn. 86, 084602 (2017). 10.7566/JPSJ.86.084602 Link, Google Scholar
- 10 J. Fröhlich, B. Simon, and T. Spencer, Commun. Math. Phys. 50, 79 (1976). 10.1007/BF01608557 Crossref, Google Scholar
- 11 P. G. de Genne and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, U.K., 1993) 3rd ed. Google Scholar
- 12 P. A. Lebwohl and Q. Lasher, Phys. Rev. A 6, 426 (1972). 10.1103/PhysRevA.6.426 Crossref, Google Scholar
- 13 H. Meirovitch, Chem. Phys. 21, 251 (1977). 10.1016/0301-0104(77)80019-0 Crossref, Google Scholar
- 14 C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981). 10.1103/PhysRevLett.47.1556 Crossref, Google Scholar
- 15 L. Onsager, Phys. Rev. 65, 117 (1944). 10.1103/PhysRev.65.117 Crossref, Google Scholar
- 16 P. C. Hohenberg, Phys. Rev. 158, 383 (1967). 10.1103/PhysRev.158.383 Crossref, Google Scholar
- 17 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). 10.1103/PhysRevLett.17.1133 Crossref, Google Scholar
- 18 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973). 10.1088/0022-3719/6/7/010 Crossref, Google Scholar
- 19 J. M. Kosterlitz, J. Phys. C 7, 1046 (1974). 10.1088/0022-3719/7/6/005 Crossref, Google Scholar
- 20 C. Chiccoli, P. Pasini, and C. Zannoni, Physica A 148, 298 (1988). 10.1016/0378-4371(88)90148-3 Crossref, Google Scholar
- 21 H. Kunz and G. Zumbach, Phys. Rev. B 46, 662 (1992). 10.1103/PhysRevB.46.662 Crossref, Google Scholar
- 22 E. Mondal and S. K. Roy, Phys. Lett. A 312, 397 (2003). 10.1016/S0375-9601(03)00576-0 Crossref, Google Scholar
- 23 S. Dutta and S. K. Roy, Phys. Rev. E 70, 066125 (2004). 10.1103/PhysRevE.70.066125 Crossref, Google Scholar
- 24 R. Paredes V., A. I. Fariñas-Sánchez, and R. Botet, Phys. Rev. E 78, 051706 (2008). 10.1103/PhysRevE.78.051706 Crossref, Google Scholar
- 25 Y. Tomita, Phys. Rev. E 90, 032109 (2014). 10.1103/PhysRevE.90.032109 Crossref, Google Scholar
- 26 W. Maier and A. Saupe, Z. Naturforsch. A 13, 564 (1958). 10.1515/zna-1958-0716 Crossref, Google Scholar
- 27 Z. Zhang, O. G. Mouritsen, and M. J. Zuckermann, Phys. Rev. Lett. 69, 2803 (1992). 10.1103/PhysRevLett.69.2803 Crossref, Google Scholar
- 28 Z. Zhang, M. J. Zuckermann, and O. G. Mouritsen, Mol. Phys. 80, 1195 (1993). 10.1080/00268979300102981 Crossref, Google Scholar
- 29 N. V. Priezjev and R. A. Pelcovits, Phys. Rev. E 64, 031710 (2001). 10.1103/PhysRevE.64.031710 Crossref, Google Scholar
- 30 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114 Crossref, Google Scholar
- 31 M. Matsumoto and T. Nishimura, ACM Trans. Modeling Comput. Simulation 8, 3 (1998). 10.1145/272991.272995 Crossref, Google Scholar
- 32 H. Park, Phys. Rev. B 49, 12881 (1994). 10.1103/PhysRevB.49.12881 Crossref, Google Scholar
- 33 D. Stauffer, Phys. Rep. 54, 1 (1979). 10.1016/0370-1573(79)90060-7 Crossref, Google Scholar
- 34 M. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 (1964). 10.1063/1.1704215 Crossref, Google Scholar
- 35 G. André, R. Bidaux, J.-P. Carton, R. Conte, and L. De Seze, J. Phys. (Paris) 40, 479 (1979). 10.1051/jphys:01979004005047900 Crossref, Google Scholar
- 36 J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. (Paris) 41, 1263 (1980). 10.1051/jphys:0198000410110126300 Crossref, Google Scholar