- Full text:
- PDF (eReader) / PDF (Download) (2120 kB)
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (∼2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
References
- 1 G. Ouvrard, R. Brec, and J. Rouxel, Mater. Res. Bull. 20, 1181 (1985). 10.1016/0025-5408(85)90092-3 Crossref, Google Scholar
- 2 J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park, J.-G. Park, and H. Cheong, Nano Lett. 16, 7433 (2016). 10.1021/acs.nanolett.6b03052 Crossref, Google Scholar
- 3 A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lançon, G. Pepe, B. Moubaraki, and T. J. Hicks, Phys. Rev. B 92, 224408 (2015). 10.1103/PhysRevB.92.224408 Crossref, Google Scholar
- 4 P. A. Joy and S. Vasudevan, Phys. Rev. B 46, 5425 (1992). 10.1103/PhysRevB.46.5425 Crossref, Google Scholar
- 5 G. Le Flem, R. Brec, G. Ouvard, A. Louisy, and P. Segransan, J. Phys. Chem. Solids 43, 455 (1982). 10.1016/0022-3697(82)90156-1 Crossref, Google Scholar
- 6 K. Kurosawa, S. Saito, and Y. Yamaguch, J. Phys. Soc. Jpn. 52, 3919 (1983). 10.1143/JPSJ.52.3919 Link, Google Scholar
- 7 A. R. Wildes, V. Simonet, E. Ressouche, R. Ballou, and G. J. McIntyre, J. Phys.: Condens. Matter 29, 455801 (2017). 10.1088/1361-648X/aa8a43 Crossref, Google Scholar
- 8 Y. Wang, J. Ying, Z. Zhou, J. Sun, T. Wen, Y. Zhou, N. Li, Q. Zhang, F. Han, Y. Xiao, P. Chow, W. Yang, V. V. Struzhkin, Y. Zhao, and H. Mao, Nat. Commun. 9, 1914 (2018). 10.1038/s41467-018-04326-1 Crossref, Google Scholar
- 9 K. Ichimura and M. Sano, Synth. Met. 45, 203 (1991). 10.1016/0379-6779(91)91804-J Crossref, Google Scholar
- 10 X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Proc. Natl. Acad. Sci. U.S.A. 110, 3738 (2013). 10.1073/pnas.1219420110 Crossref, Google Scholar
- 11 X. Ma, Y. Wang, Y. Yin, B. Yue, J. Dai, J. Cheng, J. Ji, F. Jin, F. Hong, J.-T. Wang, Q. Zhang, and X. Yu, Sci. China Phys. Mech. Astron. 64, 297011 (2021). 10.1007/s11433-021-1727-6 Crossref, Google Scholar
- 12 M. J. Coak, S. Son, D. Daisenberger, H. Hamidov, C. R. S. Haines, P. L. Alireza, A. R. Wildes, C. Liu, S. S. Saxena, and J.-G. Park, npj Quantum Mater. 4, 38 (2019). 10.1038/s41535-019-0178-8 Crossref, Google Scholar
- 13 Y. Wang, Z. Zhou, T. Wen, Y. Zhou, N. Li, F. Han, Y. Xiao, P. Chow, J. Sun, M. Pravica, A. L. Cornelius, W. Yang, and Y. Zhao, J. Am. Chem. Soc. 138, 15751 (2016). 10.1021/jacs.6b10225 Crossref, Google Scholar
- 14 W. Toyoshima, T. Masubuchi, T. Watanabe, K. Takase, K. Matsubayashi, Y. Uwatoko, and Y. Takano, J. Phys.: Conf. Ser. 150, 042215 (2009). 10.1088/1742-6596/150/4/042215 Crossref, Google Scholar
- 15 C. R. S. Haines, M. J. Coak, A. R. Wildes, G. I. Lampronti, C. Liu, P. Nahai-Williamson, H. Hamidov, D. Daisenberger, and S. S. Saxena, Phys. Rev. Lett. 121, 266801 (2018). 10.1103/PhysRevLett.121.266801 Crossref, Google Scholar
- 16 M. Tsurubayashi, K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase, and Y. Takano, AIP Adv. 8, 101307 (2018). 10.1063/1.5043121 Crossref, Google Scholar
- 17 Z. Hiroi, J. Yamaura, T. C. Kobayashi, Y. Matsubayashi, and D. Hirai, J. Phys. Soc. Jpn. 87, 024702 (2018). 10.7566/JPSJ.87.024702 Link, Google Scholar
- 18 H.-S. Kim, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 123, 236401 (2019). 10.1103/PhysRevLett.123.236401 Crossref, Google Scholar
- 19 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018). 10.1038/nature26154 Crossref, Google Scholar
- 20 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018). 10.1038/nature26160 Crossref, Google Scholar
- 21 S. S. Rosenblum and R. Merlin, Phys. Rev. B 59, 6317 (1999). 10.1103/PhysRevB.59.6317 Crossref, Google Scholar
- 22 H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986). 10.1029/JB091iB05p04673 Crossref, Google Scholar
- 23 C. Prescher and V. B. Prakapenka, High Pressure Res. 35, 223 (2015). 10.1080/08957959.2015.1059835 Crossref, Google Scholar
- 24 (Supplemental Material) The XRD images and the discussion of pressure condition in different PTM are provided online. Google Scholar
- 25 B. E. Taylor, J. Steger, and A. Wold, J. Solid State Chem. 7, 461 (1973). 10.1016/0022-4596(73)90175-8 Crossref, Google Scholar
- 26 N. Tateiwa and Y. Haga, Rev. Sci. Instrum. 80, 123901 (2009). 10.1063/1.3265992 Crossref, Google Scholar
- 27 M. Matsui, Y. Higo, Y. Okamoto, T. Irifune, and K.-I. Funakoshi, Am. Mineral. 97, 1670 (2012). 10.2138/am.2012.4136 Crossref, Google Scholar
- 28 T. Sakai, E. Ohtani, N. Hirao, and Y. Ohishi, J. Appl. Phys. 109, 084912 (2011). 10.1063/1.3573393 Crossref, Google Scholar
- 29 N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, J. Appl. Phys. 66, 2962 (1989). 10.1063/1.344177 Crossref, Google Scholar