J. Phys. Soc. Jpn. 90, 124706 (2021) [6 Pages]

Pressure-Induced Insulator–Metal Transition in Two-Dimensional Mott Insulator NiPS3

+ Affiliations
1Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, U.S.A.2Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, U.S.A.3HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.4Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, U.S.A.5Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (∼2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.

©2021 The Physical Society of Japan


  • 1 G. Ouvrard, R. Brec, and J. Rouxel, Mater. Res. Bull. 20, 1181 (1985). 10.1016/0025-5408(85)90092-3 CrossrefGoogle Scholar
  • 2 J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park, J.-G. Park, and H. Cheong, Nano Lett. 16, 7433 (2016). 10.1021/acs.nanolett.6b03052 CrossrefGoogle Scholar
  • 3 A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lançon, G. Pepe, B. Moubaraki, and T. J. Hicks, Phys. Rev. B 92, 224408 (2015). 10.1103/PhysRevB.92.224408 CrossrefGoogle Scholar
  • 4 P. A. Joy and S. Vasudevan, Phys. Rev. B 46, 5425 (1992). 10.1103/PhysRevB.46.5425 CrossrefGoogle Scholar
  • 5 G. Le Flem, R. Brec, G. Ouvard, A. Louisy, and P. Segransan, J. Phys. Chem. Solids 43, 455 (1982). 10.1016/0022-3697(82)90156-1 CrossrefGoogle Scholar
  • 6 K. Kurosawa, S. Saito, and Y. Yamaguch, J. Phys. Soc. Jpn. 52, 3919 (1983). 10.1143/JPSJ.52.3919 LinkGoogle Scholar
  • 7 A. R. Wildes, V. Simonet, E. Ressouche, R. Ballou, and G. J. McIntyre, J. Phys.: Condens. Matter 29, 455801 (2017). 10.1088/1361-648X/aa8a43 CrossrefGoogle Scholar
  • 8 Y. Wang, J. Ying, Z. Zhou, J. Sun, T. Wen, Y. Zhou, N. Li, Q. Zhang, F. Han, Y. Xiao, P. Chow, W. Yang, V. V. Struzhkin, Y. Zhao, and H. Mao, Nat. Commun. 9, 1914 (2018). 10.1038/s41467-018-04326-1 CrossrefGoogle Scholar
  • 9 K. Ichimura and M. Sano, Synth. Met. 45, 203 (1991). 10.1016/0379-6779(91)91804-J CrossrefGoogle Scholar
  • 10 X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Proc. Natl. Acad. Sci. U.S.A. 110, 3738 (2013). 10.1073/pnas.1219420110 CrossrefGoogle Scholar
  • 11 X. Ma, Y. Wang, Y. Yin, B. Yue, J. Dai, J. Cheng, J. Ji, F. Jin, F. Hong, J.-T. Wang, Q. Zhang, and X. Yu, Sci. China Phys. Mech. Astron. 64, 297011 (2021). 10.1007/s11433-021-1727-6 CrossrefGoogle Scholar
  • 12 M. J. Coak, S. Son, D. Daisenberger, H. Hamidov, C. R. S. Haines, P. L. Alireza, A. R. Wildes, C. Liu, S. S. Saxena, and J.-G. Park, npj Quantum Mater. 4, 38 (2019). 10.1038/s41535-019-0178-8 CrossrefGoogle Scholar
  • 13 Y. Wang, Z. Zhou, T. Wen, Y. Zhou, N. Li, F. Han, Y. Xiao, P. Chow, J. Sun, M. Pravica, A. L. Cornelius, W. Yang, and Y. Zhao, J. Am. Chem. Soc. 138, 15751 (2016). 10.1021/jacs.6b10225 CrossrefGoogle Scholar
  • 14 W. Toyoshima, T. Masubuchi, T. Watanabe, K. Takase, K. Matsubayashi, Y. Uwatoko, and Y. Takano, J. Phys.: Conf. Ser. 150, 042215 (2009). 10.1088/1742-6596/150/4/042215 CrossrefGoogle Scholar
  • 15 C. R. S. Haines, M. J. Coak, A. R. Wildes, G. I. Lampronti, C. Liu, P. Nahai-Williamson, H. Hamidov, D. Daisenberger, and S. S. Saxena, Phys. Rev. Lett. 121, 266801 (2018). 10.1103/PhysRevLett.121.266801 CrossrefGoogle Scholar
  • 16 M. Tsurubayashi, K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase, and Y. Takano, AIP Adv. 8, 101307 (2018). 10.1063/1.5043121 CrossrefGoogle Scholar
  • 17 Z. Hiroi, J. Yamaura, T. C. Kobayashi, Y. Matsubayashi, and D. Hirai, J. Phys. Soc. Jpn. 87, 024702 (2018). 10.7566/JPSJ.87.024702 LinkGoogle Scholar
  • 18 H.-S. Kim, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 123, 236401 (2019). 10.1103/PhysRevLett.123.236401 CrossrefGoogle Scholar
  • 19 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018). 10.1038/nature26154 CrossrefGoogle Scholar
  • 20 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018). 10.1038/nature26160 CrossrefGoogle Scholar
  • 21 S. S. Rosenblum and R. Merlin, Phys. Rev. B 59, 6317 (1999). 10.1103/PhysRevB.59.6317 CrossrefGoogle Scholar
  • 22 H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986). 10.1029/JB091iB05p04673 CrossrefGoogle Scholar
  • 23 C. Prescher and V. B. Prakapenka, High Pressure Res. 35, 223 (2015). 10.1080/08957959.2015.1059835 CrossrefGoogle Scholar
  • 24 (Supplemental Material) The XRD images and the discussion of pressure condition in different PTM are provided online. Google Scholar
  • 25 B. E. Taylor, J. Steger, and A. Wold, J. Solid State Chem. 7, 461 (1973). 10.1016/0022-4596(73)90175-8 CrossrefGoogle Scholar
  • 26 N. Tateiwa and Y. Haga, Rev. Sci. Instrum. 80, 123901 (2009). 10.1063/1.3265992 CrossrefGoogle Scholar
  • 27 M. Matsui, Y. Higo, Y. Okamoto, T. Irifune, and K.-I. Funakoshi, Am. Mineral. 97, 1670 (2012). 10.2138/am.2012.4136 CrossrefGoogle Scholar
  • 28 T. Sakai, E. Ohtani, N. Hirao, and Y. Ohishi, J. Appl. Phys. 109, 084912 (2011). 10.1063/1.3573393 CrossrefGoogle Scholar
  • 29 N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, J. Appl. Phys. 66, 2962 (1989). 10.1063/1.344177 CrossrefGoogle Scholar