J. Phys. Soc. Jpn. 91, 054603 (2022) [10 Pages]
FULL PAPERS

Seebeck Effect of Dirac Electrons

+ Affiliations
1Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan2Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

We investigate the Seebeck effect in a three-dimensional Dirac electron system based on the linear response theory and Luttinger’s gravitational potential. The Seebeck coefficient S is defined by S = L12/L11T, where T is the temperature, and L11 and L12 are the longitudinal response coefficients of the charge current to the electric field and to the temperature gradient, respectively; L11 is the electric conductivity and L12 is the thermoelectric conductivity. We consider randomly-distributed impurity potentials as the source of the momentum relaxation of electrons and microscopically calculate the relaxation rate and the vertex corrections of L11 and L12 due to the impurities. It is confirmed that L11 and L12 are related through Mott’s formula in low temperatures when the chemical potential lies above the gap (|μ| > Δ), irrespective of the linear dispersion of the Dirac electrons and unconventional energy dependence of the lifetime of electrons. Alternatively, when the chemical potential lies in the bandgap (|μ| < Δ), Seebeck coefficient functions similar to that of conventional semiconductors; its dependences on the chemical potential, μ, and the temperature, T, are partially captured by S ∝ (Δ − μ)/kBT for μ > 0. The Seebeck coefficient takes a relatively large value |S| \( \simeq \) 1.7 mV/K at T \( \simeq \) 4.3 K for Δ = 8 meV by assuming doped bismuth.

©2022 The Physical Society of Japan

References

  • 1 T. J. Seebeck, Abh. Akad. Wiss. Berlin 289, 1820 (1822). Google Scholar
  • 2 M. H. Cohen and E. I. Blount, Philos. Mag. 5, 115 (1960). 10.1080/14786436008243294 CrossrefGoogle Scholar
  • 3 P. A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964). 10.1016/0022-3697(64)90128-3 CrossrefGoogle Scholar
  • 4 Y. Fuseya, M. Ogata, and H. Fukuyama, J. Phys. Soc. Jpn. 81, 093704 (2012). 10.1143/JPSJ.81.093704 LinkGoogle Scholar
  • 5 N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998). 10.1143/JPSJ.67.2421 LinkGoogle Scholar
  • 6 K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, New York, 2015). CrossrefGoogle Scholar
  • 7 M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 88, 074703 (2019). 10.7566/JPSJ.88.074703 LinkGoogle Scholar
  • 8 J. Luttinger, Phys. Rev. 135, A1505 (1964). 10.1103/PhysRev.135.A1505 CrossrefGoogle Scholar
  • 9 Y. Liu and R. E. Allen, Phys. Rev. B 52, 1566 (1995). 10.1103/PhysRevB.52.1566 CrossrefGoogle Scholar
  • 10 L. M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965). 10.1103/PhysRev.137.A871 CrossrefGoogle Scholar
  • 11 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). 10.1103/PhysRev.108.590 CrossrefGoogle Scholar
  • 12 G. D. Mahan, Many-Particle Physics (Springer US, Boston, MA, 2000). CrossrefGoogle Scholar
  • 13 T. Fukazawa, H. Kohno, and J. Fujimoto, J. Phys. Soc. Jpn. 86, 094704 (2017). 10.7566/JPSJ.86.094704 LinkGoogle Scholar
  • 14 J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014). 10.1103/PhysRevB.90.214418 CrossrefGoogle Scholar
  • 15 J. Fujimoto, Phys. Rev. B 97, 104421 (2018). 10.1103/PhysRevB.97.104421 CrossrefGoogle Scholar
  • 16 M. Jonson and G. D. Mahan, Phys. Rev. B 42, 9350 (1990). 10.1103/PhysRevB.42.9350 CrossrefGoogle Scholar
  • 17 H. Kontani, Phys. Rev. B 67, 014408 (2003). 10.1103/PhysRevB.67.014408 CrossrefGoogle Scholar
  • 18 L. Smrcka and P. Streda, J. Phys. C 10, 2153 (1977). 10.1088/0022-3719/10/12/021 CrossrefGoogle Scholar
  • 19 N. R. Cooper, B. I. Halperin, and I. M. Ruzin, Phys. Rev. B 55, 2344 (1997). 10.1103/PhysRevB.55.2344 CrossrefGoogle Scholar
  • 20 H. Kohno, Y. Hiraoka, M. Hatami, and G. E. W. Bauer, Phys. Rev. B 94, 104417 (2016). 10.1103/PhysRevB.94.104417 CrossrefGoogle Scholar
  • 21 M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004). Google Scholar
  • 22 N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, New York, 2012). Google Scholar
  • 23 K. Sakai, C. Ishii, and H. Fukuyama, J. Phys. Soc. Jpn. 50, 3590 (1981). 10.1143/JPSJ.50.3590 LinkGoogle Scholar
  • 24 B. S. Chandrasekhar, J. Phys. Chem. Solids 11, 268 (1959). 10.1016/0022-3697(59)90225-2 CrossrefGoogle Scholar
  • 25 V. D. Das and N. Soundararajan, Phys. Rev. B 35, 5990 (1987). 10.1103/PhysRevB.35.5990 CrossrefGoogle Scholar
  • 26 Y. Fuseya, Z. Zhu, B. Fauqué, W. Kang, B. Lenoir, and K. Behnia, Phys. Rev. Lett. 115, 216401 (2015). 10.1103/PhysRevLett.115.216401 CrossrefGoogle Scholar