- Full text:
- PDF (eReader) / PDF (Download) (1510 kB)
We investigate the Seebeck effect in a three-dimensional Dirac electron system based on the linear response theory and Luttinger’s gravitational potential. The Seebeck coefficient S is defined by S = L12/L11T, where T is the temperature, and L11 and L12 are the longitudinal response coefficients of the charge current to the electric field and to the temperature gradient, respectively; L11 is the electric conductivity and L12 is the thermoelectric conductivity. We consider randomly-distributed impurity potentials as the source of the momentum relaxation of electrons and microscopically calculate the relaxation rate and the vertex corrections of L11 and L12 due to the impurities. It is confirmed that L11 and L12 are related through Mott’s formula in low temperatures when the chemical potential lies above the gap (|μ| > Δ), irrespective of the linear dispersion of the Dirac electrons and unconventional energy dependence of the lifetime of electrons. Alternatively, when the chemical potential lies in the bandgap (|μ| < Δ), Seebeck coefficient functions similar to that of conventional semiconductors; its dependences on the chemical potential, μ, and the temperature, T, are partially captured by S ∝ (Δ − μ)/kBT for μ > 0. The Seebeck coefficient takes a relatively large value |S|
References
- 1 T. J. Seebeck, Abh. Akad. Wiss. Berlin 289, 1820 (1822). Google Scholar
- 2 M. H. Cohen and E. I. Blount, Philos. Mag. 5, 115 (1960). 10.1080/14786436008243294 Crossref, Google Scholar
- 3 P. A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964). 10.1016/0022-3697(64)90128-3 Crossref, Google Scholar
- 4 Y. Fuseya, M. Ogata, and H. Fukuyama, J. Phys. Soc. Jpn. 81, 093704 (2012). 10.1143/JPSJ.81.093704 Link, Google Scholar
- 5 N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998). 10.1143/JPSJ.67.2421 Link, Google Scholar
- 6 K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, New York, 2015). Crossref, Google Scholar
- 7 M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 88, 074703 (2019). 10.7566/JPSJ.88.074703 Link, Google Scholar
- 8 J. Luttinger, Phys. Rev. 135, A1505 (1964). 10.1103/PhysRev.135.A1505 Crossref, Google Scholar
- 9 Y. Liu and R. E. Allen, Phys. Rev. B 52, 1566 (1995). 10.1103/PhysRevB.52.1566 Crossref, Google Scholar
- 10 L. M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965). 10.1103/PhysRev.137.A871 Crossref, Google Scholar
- 11 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). 10.1103/PhysRev.108.590 Crossref, Google Scholar
- 12 G. D. Mahan, Many-Particle Physics (Springer US, Boston, MA, 2000). Crossref, Google Scholar
- 13 T. Fukazawa, H. Kohno, and J. Fujimoto, J. Phys. Soc. Jpn. 86, 094704 (2017). 10.7566/JPSJ.86.094704 Link, Google Scholar
- 14 J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014). 10.1103/PhysRevB.90.214418 Crossref, Google Scholar
- 15 J. Fujimoto, Phys. Rev. B 97, 104421 (2018). 10.1103/PhysRevB.97.104421 Crossref, Google Scholar
- 16 M. Jonson and G. D. Mahan, Phys. Rev. B 42, 9350 (1990). 10.1103/PhysRevB.42.9350 Crossref, Google Scholar
- 17 H. Kontani, Phys. Rev. B 67, 014408 (2003). 10.1103/PhysRevB.67.014408 Crossref, Google Scholar
- 18 L. Smrcka and P. Streda, J. Phys. C 10, 2153 (1977). 10.1088/0022-3719/10/12/021 Crossref, Google Scholar
- 19 N. R. Cooper, B. I. Halperin, and I. M. Ruzin, Phys. Rev. B 55, 2344 (1997). 10.1103/PhysRevB.55.2344 Crossref, Google Scholar
- 20 H. Kohno, Y. Hiraoka, M. Hatami, and G. E. W. Bauer, Phys. Rev. B 94, 104417 (2016). 10.1103/PhysRevB.94.104417 Crossref, Google Scholar
- 21 M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004). Google Scholar
- 22 N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, New York, 2012). Google Scholar
- 23 K. Sakai, C. Ishii, and H. Fukuyama, J. Phys. Soc. Jpn. 50, 3590 (1981). 10.1143/JPSJ.50.3590 Link, Google Scholar
- 24 B. S. Chandrasekhar, J. Phys. Chem. Solids 11, 268 (1959). 10.1016/0022-3697(59)90225-2 Crossref, Google Scholar
- 25 V. D. Das and N. Soundararajan, Phys. Rev. B 35, 5990 (1987). 10.1103/PhysRevB.35.5990 Crossref, Google Scholar
- 26 Y. Fuseya, Z. Zhu, B. Fauqué, W. Kang, B. Lenoir, and K. Behnia, Phys. Rev. Lett. 115, 216401 (2015). 10.1103/PhysRevLett.115.216401 Crossref, Google Scholar