J. Phys. Soc. Jpn. 91, 074007 (2022) [9 Pages]
FULL PAPERS

Headless Heisenberg Spin Models Preferring Twist on Triangular Lattice: Phase Transition under External Field

+ Affiliations
Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Numerical experiments on the Heisenberg model of headless spins, which prefer mutual twists, are performed for the two-dimensional triangular lattice under external fields to squeeze information about the phase transition proposed previously without field [J. Phys. Soc. Jpn. 90, 124003 (2021)], which brings only a local order below the transition temperature. A phase transition that accompanies a change in spatial periodicity occurs at practically the same temperature as without the field. The analyses of the field-effect reveal a hidden instability toward the nematic order. The state diagram for a broad parameter range indicates that the temperature characteristic of the instability is appreciably higher than the phase transition temperature, implying a feeble effect of the field on the phase transition. Discussed are some specific properties of the model, such as macroscopic degeneracy of the ground state, the absence of frustration, spin order under the field, and phase transition exhibited by the continuous spin model in spatial dimension two.

©2022 The Physical Society of Japan

References

  • 1 L. Onsager, Phys. Rev., Series II 65, 117 (1944). 10.1103/PhysRev.65.117 CrossrefGoogle Scholar
  • 2 P. C. Hohenberg, Phys. Rev. 158, 383 (1967). 10.1103/PhysRev.158.383 CrossrefGoogle Scholar
  • 3 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). 10.1103/PhysRevLett.17.1133 CrossrefGoogle Scholar
  • 4 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973). 10.1088/0022-3719/6/7/010 CrossrefGoogle Scholar
  • 5 J. M. Kosterlitz, J. Phys. C 7, 1046 (1974). 10.1088/0022-3719/7/6/005 CrossrefGoogle Scholar
  • 6 K. Saito, M. Hishida, and Y. Yamamura, J. Phys. Soc. Jpn. 90, 124003 (2021). 10.7566/JPSJ.90.124003 LinkGoogle Scholar
  • 7 K. Saito, M. Hishida, and Y. Yamamura, J. Phys. Soc. Jpn. 86, 084602 (2017). 10.7566/JPSJ.86.084602 LinkGoogle Scholar
  • 8 H. Park, Phys. Rev. B 49, 12881 (1994). 10.1103/PhysRevB.49.12881 CrossrefGoogle Scholar
  • 9 P. G. de Genne and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, U.K., 1993) 3rd ed. Google Scholar
  • 10 W. Maier and A. Saupe, Z. Naturforsch. A 13, 564 (1958). 10.1515/zna-1958-0716 CrossrefGoogle Scholar
  • 11 Y. Tomita, Phys. Rev. E 90, 032109 (2014). 10.1103/PhysRevE.90.032109 CrossrefGoogle Scholar
  • 12 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114 CrossrefGoogle Scholar
  • 13 M. Matsumoto and T. Nishimura, ACM Trans. Modeling Comput. Simulation 8, 3 (1998). 10.1145/272991.272995 CrossrefGoogle Scholar
  • 14 L. D. Landau and E. M. Lifshitz, Statistical Physics (Butterworth, Oxford, U.K., 1980) 3rd ed. Google Scholar
  • 15 J.-C. Tolédano and P. Tolédano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987). CrossrefGoogle Scholar
  • 16 R. B. Griffiths, J. Appl. Phys. 40, 1542 (1969). 10.1063/1.1657753 CrossrefGoogle Scholar
  • 17 Y. Nakazawa, M. Tamura, N. Shirakawa, D. Shiomi, M. Takahashi, M. Kinoshita, and M. Ishikawa, Phys. Rev. B 46, 8906 (1992). 10.1103/PhysRevB.46.8906 CrossrefGoogle Scholar
  • 18 J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. (Paris) 41, 1263 (1980). 10.1051/jphys:0198000410110126300 CrossrefGoogle Scholar
  • 19 D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos. Mag. 35, 593 (1977). 10.1080/14786437708235992 CrossrefGoogle Scholar
  • 20 G. Parisi, J. Phys. A 13, 1101 (1980). 10.1088/0305-4470/13/3/042 CrossrefGoogle Scholar
  • 21 A. J. Bray and M. A. Moore, J. Phys. C 13, L469 (1980). 10.1088/0022-3719/13/19/002 CrossrefGoogle Scholar
  • 22 K. Nemoto and H. Takayama, J. Phys. C 18, L529 (1985). 10.1088/0022-3719/18/18/005 CrossrefGoogle Scholar