- Full text:
- PDF (eReader) / PDF (Download) (1865 kB)
In noncentrosymmetric materials, a difference frequency generation from a femtosecond laser pulse or equivalently an optical rectification via a second-order nonlinear optical effect is known to be a dominant process for the emission of broadband terahertz radiations. Here, we report that a terahertz radiation with long-lived terahertz multi-narrowband-components appears in a photoinduced phase transition in an organic molecular compound, α-(BEDT-TTF)2I3 [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene]. This compound is a charge-order insulator below 135 K accompanied by the electronic-type ferroelectricity. By an irradiation of a near-infrared femtosecond laser pulse on the ferroelectric charge-order phase in α-(BEDT-TTF)2I3, the terahertz radiation consisting of a single-cycle component and several kinds of long-lived narrowband oscillatory components are detected. The frequencies of the oscillatory components accord with those of the infrared-active phonon modes coupled with charge degrees of freedom located in the terahertz region. By comparing the excitation density dependence of the electric-field waveforms of the terahertz radiation with that of the time characteristics of the reflectivity changes reflecting the photoinduced charge-order melting, we revealed the mechanisms of the observed terahertz radiation. The single-cycle component is attributed to two mechanisms, the optical rectification and the reduction of the ferroelectric polarization by the photoinduced melting of the charge order. With the increase of the excitation density, the former mechanism tends to be suppressed and the latter mechanism dominates the terahertz radiation in the strong excitation. The narrowband oscillatory components of the terahertz radiation are assigned to the coherent molecular oscillations with charge modulations, which are driven via the disappearance of the molecular displacements stabilizing the charge order.
References
- 1 M. Tonouchi, Nat. Photonics 1, 97 (2007). 10.1038/nphoton.2007.3 Crossref, Google Scholar
- 2 T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013). 10.1038/nphoton.2013.184 Crossref, Google Scholar
- 3 Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). Google Scholar
- 4 M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446 (1962). 10.1103/PhysRevLett.9.446 Crossref, Google Scholar
- 5 A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996). 10.1063/1.117511 Crossref, Google Scholar
- 6 X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, Appl. Phys. Lett. 61, 3080 (1992). 10.1063/1.107968 Crossref, Google Scholar
- 7 Y. Kinoshita, N. Kida, Y. Magasaki, T. Morimoto, T. Terashige, T. Miyamoto, and H. Okamoto, Phys. Rev. Lett. 124, 057402 (2020). 10.1103/PhysRevLett.124.057402 Crossref, Google Scholar
- 8 H. Okamoto, Y. Ishige, S. Tanaka, H. Kishida, S. Iwai, and Y. Tokura, Phys. Rev. B 70, 165202 (2004). 10.1103/PhysRevB.70.165202 Crossref, Google Scholar
- 9 K. Yamamoto, S. Iwai, S. Boyko, A. Kashiwazaki, F. Hiramatsu, C. Okabe, N. Nishi, and K. Yakushi, J. Phys. Soc. Jpn. 77, 074709 (2008). 10.1143/JPSJ.77.074709 Link, Google Scholar
- 10 H. Yamakawa, T. Miyamoto, T. Morimoto, H. Yada, Y. Kinoshita, M. Sotome, N. Kida, K. Yamamoto, K. Iwano, Y. Matsumoto, S. Watanabe, Y. Shimoi, M. Suda, H. M. Yamamoto, H. Mori, and H. Okamoto, Sci. Rep. 6, 20571 (2016). 10.1038/srep20571 Crossref, Google Scholar
- 11 S. Iwai, K. Yamamoto, A. Kashiwazaki, F. Hiramatsu, H. Nakaya, Y. Kawakami, K. Yakushi, H. Okamoto, H. Mori, and Y. Nishio, Phys. Rev. Lett. 98, 097402 (2007). 10.1103/PhysRevLett.98.097402 Crossref, Google Scholar
- 12 Y. Kawakami, T. Fukatsu, Y. Sakurai, H. Unno, H. Itoh, S. Iwai, T. Sasaki, K. Yamamoto, K. Yakushi, and K. Yonemitsu, Phys. Rev. Lett. 105, 246402 (2010). 10.1103/PhysRevLett.105.246402 Crossref, Google Scholar
- 13 H. Itoh, K. Itoh, K. Goto, K. Yamamoto, K. Yakushi, and S. Iwai, Appl. Phys. Lett. 104, 173302 (2014). 10.1063/1.4871735 Crossref, Google Scholar
- 14 H. Itoh, R. Fujiwara, Y. Kawakami, K. Yamamoto, Y. Nakamura, H. Kishida, and S. Iwai, Appl. Phys. Lett. 112, 093302 (2018). 10.1063/1.4995798 Crossref, Google Scholar
- 15 K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, and H. J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984). 10.1080/00268948408078687 Crossref, Google Scholar
- 16 K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. Schäfer, and D. Schweitzer, Mol. Cryst. Liq. Cryst. 107, 45 (1984). 10.1080/00268948408072071 Crossref, Google Scholar
- 17 P. Alemany, J.-P. Pouget, and E. Canadell, Phys. Rev. B 85, 195118 (2012). 10.1103/PhysRevB.85.195118 Crossref, Google Scholar
- 18 T. Ivek, M. Čulo, M. Kuveždić, E. Tutiš, M. Basletić, B. Mihaljević, E. Tafra, S. Tomić, A. Löhle, M. Dressel, D. Schweitzer, and B. Korin-Hamzić, Phys. Rev. B 96, 075141 (2017). 10.1103/PhysRevB.96.075141 Crossref, Google Scholar
- 19 Y. Takano, K. Hiraki, H. M. Yamamoto, T. Nakamura, and T. Takahashi, J. Phys. Chem. Solids 62, 393 (2001). 10.1016/S0022-3697(00)00173-6 Crossref, Google Scholar
- 20 N. Tajima, S. Sugawara, M. Tamura, Y. Nishio, and K. Kajita, J. Phys. Soc. Jpn. 75, 051010 (2006). 10.1143/JPSJ.75.051010 Link, Google Scholar
- 21 T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Takahashi, and T. Nakamura, J. Phys. Soc. Jpn. 76, 113702 (2007). 10.1143/JPSJ.76.113702 Link, Google Scholar
- 22 T. Ivek, B. Korin-Hamzić, O. Milat, S. Tomić, C. Clauss, N. Drichko, D. Schweitzer, and M. Dressel, Phys. Rev. B 83, 165128 (2011). 10.1103/PhysRevB.83.165128 Crossref, Google Scholar
- 23 P. Guionneau, C. J. Kepert, G. Bravic, D. Chasseau, M. R. Truter, M. Kurmoo, and P. Day, Synth. Met. 86, 1973 (1997). 10.1016/S0379-6779(97)80983-6 Crossref, Google Scholar
- 24 R. Beyer, A. Dengl, T. Peterseim, S. Wackerow, T. Ivek, A. V. Pronin, D. Schweitzer, and M. Dressel, Phys. Rev. B 93, 195116 (2016). 10.1103/PhysRevB.93.195116 Crossref, Google Scholar
- 25 H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000). 10.1143/JPSJ.69.805 Link, Google Scholar
- 26 A. Girlando, J. Phys. Chem. C 115, 19371 (2011). 10.1021/jp206171r Crossref, Google Scholar
- 27 K. Yakushi, Crystals 2, 1291 (2012). 10.3390/cryst2031291 Crossref, Google Scholar
- 28 K. Yamamoto, A. A. Kowalska, and K. Yakushi, Appl. Phys. Lett. 96, 122901 (2010). 10.1063/1.3327810 Crossref, Google Scholar
- 29 M. Sotome, N. Kida, Y. Kinoshita, H. Yamakawa, T. Miyamoto, H. Mori, and H. Okamoto, Phys. Rev. B 95, 241102(R) (2017). 10.1103/PhysRevB.95.241102 Crossref, Google Scholar
- 30 P. Lunkenheimer and A. Loidl, J. Phys.: Condens. Matter 27, 373001 (2015). 10.1088/0953-8984/27/37/373001 Crossref, Google Scholar
- 31 S. Tomić and M. Dressel, Rep. Prog. Phys. 78, 096501 (2015). 10.1088/0034-4885/78/9/096501 Crossref, Google Scholar
- 32 Y. Kinoshita, N. Kida, M. Sotome, R. Takeda, N. Abe, M. Saito, T. Arima, and H. Okamoto, Jpn. J. Appl. Phys. 53, 09PD08 (2014). 10.7567/JJAP.53.09PD08 Crossref, Google Scholar
- 33 Y. Yue, K. Yamamoto, M. Uruichi, C. Nakano, K. Yakushi, S. Yamada, T. Hiejima, and A. Kawamoto, Phys. Rev. B 82, 075134 (2010). 10.1103/PhysRevB.82.075134 Crossref, Google Scholar
- 34 H. Nakaya, K. Itoh, Y. Takahashi, H. Itoh, S. Iwai, S. Saito, K. Yamamoto, and K. Yakushi, Phys. Rev. B 81, 155111 (2010). 10.1103/PhysRevB.81.155111 Crossref, Google Scholar
- 35 M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, Appl. Phys. Lett. 105, 041101 (2014). 10.1063/1.4890939 Crossref, Google Scholar