J. Phys. Soc. Jpn. 91, 094705 (2022) [10 Pages]

Terahertz Radiation with Multi-Narrowband Components via Photoinduced Melting of Charge Order in an Electronic-Type Ferroelectric Organic α-(BEDT-TTF)2I3

+ Affiliations
1Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan2Department of Applied Physics, Okayama University of Science, Okayama 700-0005, Japan3The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan4AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Chiba 277-8568, Japan

In noncentrosymmetric materials, a difference frequency generation from a femtosecond laser pulse or equivalently an optical rectification via a second-order nonlinear optical effect is known to be a dominant process for the emission of broadband terahertz radiations. Here, we report that a terahertz radiation with long-lived terahertz multi-narrowband-components appears in a photoinduced phase transition in an organic molecular compound, α-(BEDT-TTF)2I3 [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene]. This compound is a charge-order insulator below 135 K accompanied by the electronic-type ferroelectricity. By an irradiation of a near-infrared femtosecond laser pulse on the ferroelectric charge-order phase in α-(BEDT-TTF)2I3, the terahertz radiation consisting of a single-cycle component and several kinds of long-lived narrowband oscillatory components are detected. The frequencies of the oscillatory components accord with those of the infrared-active phonon modes coupled with charge degrees of freedom located in the terahertz region. By comparing the excitation density dependence of the electric-field waveforms of the terahertz radiation with that of the time characteristics of the reflectivity changes reflecting the photoinduced charge-order melting, we revealed the mechanisms of the observed terahertz radiation. The single-cycle component is attributed to two mechanisms, the optical rectification and the reduction of the ferroelectric polarization by the photoinduced melting of the charge order. With the increase of the excitation density, the former mechanism tends to be suppressed and the latter mechanism dominates the terahertz radiation in the strong excitation. The narrowband oscillatory components of the terahertz radiation are assigned to the coherent molecular oscillations with charge modulations, which are driven via the disappearance of the molecular displacements stabilizing the charge order.

©2022 The Physical Society of Japan


  • 1 M. Tonouchi, Nat. Photonics 1, 97 (2007). 10.1038/nphoton.2007.3 CrossrefGoogle Scholar
  • 2 T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013). 10.1038/nphoton.2013.184 CrossrefGoogle Scholar
  • 3 Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). Google Scholar
  • 4 M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446 (1962). 10.1103/PhysRevLett.9.446 CrossrefGoogle Scholar
  • 5 A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996). 10.1063/1.117511 CrossrefGoogle Scholar
  • 6 X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, Appl. Phys. Lett. 61, 3080 (1992). 10.1063/1.107968 CrossrefGoogle Scholar
  • 7 Y. Kinoshita, N. Kida, Y. Magasaki, T. Morimoto, T. Terashige, T. Miyamoto, and H. Okamoto, Phys. Rev. Lett. 124, 057402 (2020). 10.1103/PhysRevLett.124.057402 CrossrefGoogle Scholar
  • 8 H. Okamoto, Y. Ishige, S. Tanaka, H. Kishida, S. Iwai, and Y. Tokura, Phys. Rev. B 70, 165202 (2004). 10.1103/PhysRevB.70.165202 CrossrefGoogle Scholar
  • 9 K. Yamamoto, S. Iwai, S. Boyko, A. Kashiwazaki, F. Hiramatsu, C. Okabe, N. Nishi, and K. Yakushi, J. Phys. Soc. Jpn. 77, 074709 (2008). 10.1143/JPSJ.77.074709 LinkGoogle Scholar
  • 10 H. Yamakawa, T. Miyamoto, T. Morimoto, H. Yada, Y. Kinoshita, M. Sotome, N. Kida, K. Yamamoto, K. Iwano, Y. Matsumoto, S. Watanabe, Y. Shimoi, M. Suda, H. M. Yamamoto, H. Mori, and H. Okamoto, Sci. Rep. 6, 20571 (2016). 10.1038/srep20571 CrossrefGoogle Scholar
  • 11 S. Iwai, K. Yamamoto, A. Kashiwazaki, F. Hiramatsu, H. Nakaya, Y. Kawakami, K. Yakushi, H. Okamoto, H. Mori, and Y. Nishio, Phys. Rev. Lett. 98, 097402 (2007). 10.1103/PhysRevLett.98.097402 CrossrefGoogle Scholar
  • 12 Y. Kawakami, T. Fukatsu, Y. Sakurai, H. Unno, H. Itoh, S. Iwai, T. Sasaki, K. Yamamoto, K. Yakushi, and K. Yonemitsu, Phys. Rev. Lett. 105, 246402 (2010). 10.1103/PhysRevLett.105.246402 CrossrefGoogle Scholar
  • 13 H. Itoh, K. Itoh, K. Goto, K. Yamamoto, K. Yakushi, and S. Iwai, Appl. Phys. Lett. 104, 173302 (2014). 10.1063/1.4871735 CrossrefGoogle Scholar
  • 14 H. Itoh, R. Fujiwara, Y. Kawakami, K. Yamamoto, Y. Nakamura, H. Kishida, and S. Iwai, Appl. Phys. Lett. 112, 093302 (2018). 10.1063/1.4995798 CrossrefGoogle Scholar
  • 15 K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, and H. J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984). 10.1080/00268948408078687 CrossrefGoogle Scholar
  • 16 K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. Schäfer, and D. Schweitzer, Mol. Cryst. Liq. Cryst. 107, 45 (1984). 10.1080/00268948408072071 CrossrefGoogle Scholar
  • 17 P. Alemany, J.-P. Pouget, and E. Canadell, Phys. Rev. B 85, 195118 (2012). 10.1103/PhysRevB.85.195118 CrossrefGoogle Scholar
  • 18 T. Ivek, M. Čulo, M. Kuveždić, E. Tutiš, M. Basletić, B. Mihaljević, E. Tafra, S. Tomić, A. Löhle, M. Dressel, D. Schweitzer, and B. Korin-Hamzić, Phys. Rev. B 96, 075141 (2017). 10.1103/PhysRevB.96.075141 CrossrefGoogle Scholar
  • 19 Y. Takano, K. Hiraki, H. M. Yamamoto, T. Nakamura, and T. Takahashi, J. Phys. Chem. Solids 62, 393 (2001). 10.1016/S0022-3697(00)00173-6 CrossrefGoogle Scholar
  • 20 N. Tajima, S. Sugawara, M. Tamura, Y. Nishio, and K. Kajita, J. Phys. Soc. Jpn. 75, 051010 (2006). 10.1143/JPSJ.75.051010 LinkGoogle Scholar
  • 21 T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Takahashi, and T. Nakamura, J. Phys. Soc. Jpn. 76, 113702 (2007). 10.1143/JPSJ.76.113702 LinkGoogle Scholar
  • 22 T. Ivek, B. Korin-Hamzić, O. Milat, S. Tomić, C. Clauss, N. Drichko, D. Schweitzer, and M. Dressel, Phys. Rev. B 83, 165128 (2011). 10.1103/PhysRevB.83.165128 CrossrefGoogle Scholar
  • 23 P. Guionneau, C. J. Kepert, G. Bravic, D. Chasseau, M. R. Truter, M. Kurmoo, and P. Day, Synth. Met. 86, 1973 (1997). 10.1016/S0379-6779(97)80983-6 CrossrefGoogle Scholar
  • 24 R. Beyer, A. Dengl, T. Peterseim, S. Wackerow, T. Ivek, A. V. Pronin, D. Schweitzer, and M. Dressel, Phys. Rev. B 93, 195116 (2016). 10.1103/PhysRevB.93.195116 CrossrefGoogle Scholar
  • 25 H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000). 10.1143/JPSJ.69.805 LinkGoogle Scholar
  • 26 A. Girlando, J. Phys. Chem. C 115, 19371 (2011). 10.1021/jp206171r CrossrefGoogle Scholar
  • 27 K. Yakushi, Crystals 2, 1291 (2012). 10.3390/cryst2031291 CrossrefGoogle Scholar
  • 28 K. Yamamoto, A. A. Kowalska, and K. Yakushi, Appl. Phys. Lett. 96, 122901 (2010). 10.1063/1.3327810 CrossrefGoogle Scholar
  • 29 M. Sotome, N. Kida, Y. Kinoshita, H. Yamakawa, T. Miyamoto, H. Mori, and H. Okamoto, Phys. Rev. B 95, 241102(R) (2017). 10.1103/PhysRevB.95.241102 CrossrefGoogle Scholar
  • 30 P. Lunkenheimer and A. Loidl, J. Phys.: Condens. Matter 27, 373001 (2015). 10.1088/0953-8984/27/37/373001 CrossrefGoogle Scholar
  • 31 S. Tomić and M. Dressel, Rep. Prog. Phys. 78, 096501 (2015). 10.1088/0034-4885/78/9/096501 CrossrefGoogle Scholar
  • 32 Y. Kinoshita, N. Kida, M. Sotome, R. Takeda, N. Abe, M. Saito, T. Arima, and H. Okamoto, Jpn. J. Appl. Phys. 53, 09PD08 (2014). 10.7567/JJAP.53.09PD08 CrossrefGoogle Scholar
  • 33 Y. Yue, K. Yamamoto, M. Uruichi, C. Nakano, K. Yakushi, S. Yamada, T. Hiejima, and A. Kawamoto, Phys. Rev. B 82, 075134 (2010). 10.1103/PhysRevB.82.075134 CrossrefGoogle Scholar
  • 34 H. Nakaya, K. Itoh, Y. Takahashi, H. Itoh, S. Iwai, S. Saito, K. Yamamoto, and K. Yakushi, Phys. Rev. B 81, 155111 (2010). 10.1103/PhysRevB.81.155111 CrossrefGoogle Scholar
  • 35 M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, Appl. Phys. Lett. 105, 041101 (2014). 10.1063/1.4890939 CrossrefGoogle Scholar