J. Phys. Soc. Jpn. 91, 114708 (2022) [8 Pages]
FULL PAPERS

Single-Crystal Growth and Fermi Surface Properties of LaPd2Si2: Comparison with Pressure-Induced Heavy-Fermion Superconductor CePd2Si2

+ Affiliations
1Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan2Central Institute of Radioisotope Science and Safety, Kyushu University, Fukuoka 819-0395, Japan3Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, Prague 2, 121 16, Czech Republic4Graduate School of Science, Kobe University, Kobe 657-8501, Japan

We report the single-crystal growth and comparative Fermi surface studies of LaPd2Si2 via de Haas–van Alphen (dHvA) experiments and theoretical band structure calculations, as a non-magnetic reference for pressure-induced heavy-fermion superconductor CePd2Si2. We grew the single crystals of LaPd2Si2 using the Czochralski and floating zone method. High-quality single crystals of LaPd2Si2 were obtained using the floating zone method, and clear dHvA signals were detected. We detected main Fermi surfaces in angular dependence measurements of the dHvA frequencies, revealing a good agreement with the result of band structure calculations based on the localized-4f electron model. From our dHvA measurements using the high-quality single crystal, as well as our theoretical band structure calculations, we conclude that the 4f electrons in CePd2Si2 are itinerant rather than localized in an intermediate antiferromagnetic state.

©2022 The Physical Society of Japan

References

  • 1 C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009). 10.1103/RevModPhys.81.1551 CrossrefGoogle Scholar
  • 2 F. Steglich, J. Arndt, O. Stockert, S. Friedemann, M. Brando, C. Klingner, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, and Q. Si, J. Phys.: Condens. Matter 24, 294201 (2012). 10.1088/0953-8984/24/29/294201 CrossrefGoogle Scholar
  • 3 O. Stockert, S. Kirchner, F. Steglich, and Q. Si, J. Phys. Soc. Jpn. 81, 011001 (2012). 10.1143/JPSJ.81.011001 LinkGoogle Scholar
  • 4 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979). 10.1103/PhysRevLett.43.1892 CrossrefGoogle Scholar
  • 5 F. M. Grosche, S. R. Julian, N. D. Mathur, and G. G. Lonzarich, Physica B 223–224, 50 (1996). 10.1016/0921-4526(96)00036-1 CrossrefGoogle Scholar
  • 6 N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. M. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998). 10.1038/27838 CrossrefGoogle Scholar
  • 7 R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, Phys. Rev. B 53, 8241 (1996). 10.1103/PhysRevB.53.8241 CrossrefGoogle Scholar
  • 8 H. Yamaoka, Y. Zekko, A. Kotani, I. Jarrige, N. Tsujii, J.-F. Lin, J. Mizuki, H. Abe, H. Kitazawa, N. Hiraoka, H. Ishii, and K.-D. Tsuei, Phys. Rev. B 86, 235131 (2012). 10.1103/PhysRevB.86.235131 CrossrefGoogle Scholar
  • 9 S. Araki, R. Settai, T. C. Kobayashi, H. Harima, and Y. Ōnuki, Phys. Rev. B 64, 224417 (2001). 10.1103/PhysRevB.64.224417 CrossrefGoogle Scholar
  • 10 I. Sheikin, Y. Wang, F. Bouquet, P. Lejay, and A. Junod, J. Phys.: Condens. Matter 14, L543 (2002). 10.1088/0953-8984/14/28/104 CrossrefGoogle Scholar
  • 11 I. Sheikin, A. Gröger, S. Raymond, D. Jaccard, D. Aoki, H. Harima, and J. Flouquet, Phys. Rev. B 67, 094420 (2003). 10.1103/PhysRevB.67.094420 CrossrefGoogle Scholar
  • 12 P. Haen, J. Flouquet, F. Lapierre, P. Lejay, and G. Remenyi, J. Low Temp. Phys. 67, 391 (1987). 10.1007/BF00710351 CrossrefGoogle Scholar
  • 13 C. Paulsen, A. Lacerda, L. Puech, P. Haen, P. Lejay, J. L. Tholence, J. Flouquet, and A. de Visser, J. Low Temp. Phys. 81, 317 (1990). 10.1007/BF00682274 CrossrefGoogle Scholar
  • 14 H. P. van der Meulen, A. de Visser, J. J. M. Franse, T. T. J. M. Berendschot, J. A. A. J. Perenboom, H. van Kempen, A. Lacerda, P. Lejay, and J. Flouquet, Phys. Rev. B 44, 814 (1991). 10.1103/PhysRevB.44.814 CrossrefGoogle Scholar
  • 15 Y. Ōnuki, I. Umehara, A. K. Albessard, T. Ebihara, and K. Satoh, J. Phys. Soc. Jpn. 61, 960 (1992). 10.1143/JPSJ.61.960 LinkGoogle Scholar
  • 16 H. Aoki, S. Uji, A. K. Albessard, and Y. Ōnuki, Phys. Rev. Lett. 71, 2110 (1993). 10.1103/PhysRevLett.71.2110 CrossrefGoogle Scholar
  • 17 H. Aoki, S. Uji, A. K. Albessard, and Y. Ōnuki, J. Phys. Soc. Jpn. 62, 3157 (1993). 10.1143/JPSJ.62.3157 LinkGoogle Scholar
  • 18 M. Yano, A. Sekiyama, H. Fujiwara, Y. Amano, S. Imada, T. Muro, M. Yabashi, K. Tamasaku, A. Higashiya, T. Ishikawa, Y. Ōnuki, and S. Suga, Phys. Rev. B 77, 035118 (2008). 10.1103/PhysRevB.77.035118 CrossrefGoogle Scholar
  • 19 M. T. Suzuki and H. Harima, J. Phys. Soc. Jpn. 79, 024705 (2010). 10.1143/JPSJ.79.024705 LinkGoogle Scholar
  • 20 R. Daou, C. Bergemann, and S. R. Julian, Phys. Rev. Lett. 96, 026401 (2006). 10.1103/PhysRevLett.96.026401 CrossrefGoogle Scholar
  • 21 K. Miyake and H. Ikeda, J. Phys. Soc. Jpn. 75, 033704 (2006). 10.1143/JPSJ.75.033704 LinkGoogle Scholar
  • 22 D. Aoki, W. Knafo, and I. Sheikin, C. R. Phys. 14, 53 (2013). 10.1016/j.crhy.2012.11.004 CrossrefGoogle Scholar
  • 23 M. Vališka, H. Saito, T. Yanagisawa, C. Tabata, H. Amitsuka, K. Uhlířová, J. Prokleška, P. Proschek, J. Valenta, M. Míšek, D. I. Gorbunov, J. Wosnitza, and V. Sechovský, Phys. Rev. B 98, 174439 (2018). 10.1103/PhysRevB.98.174439 CrossrefGoogle Scholar
  • 24 F. Honda, J. Valenta, J. Prokleška, J. Pospíšil, P. Proschek, J. Prchal, and V. Sechovský, Phys. Rev. B 100, 014401 (2019). 10.1103/PhysRevB.100.014401 CrossrefGoogle Scholar
  • 25 J. Willwater, S. Süllow, M. Reehuis, R. Feyerherm, H. Amitsuka, B. Ouladdiaf, E. Suard, M. Klicpera, M. Vališka, J. Pospíšil, and V. Sechovský, Phys. Rev. B 103, 184426 (2021). 10.1103/PhysRevB.103.184426 CrossrefGoogle Scholar
  • 26 T. T. M. Palstra, G. Lu, A. A. Menovsky, G. J. Nieuwenhuys, P. H. Kes, and J. A. Mydosh, Phys. Rev. B 34, 4566 (1986). 10.1103/PhysRevB.34.4566 CrossrefGoogle Scholar
  • 27 A. V. Morozkin, Y. D. Seropegin, A. V. Gribanov, and J. M. Barakatova, J. Alloys Compd. 256, 175 (1997). 10.1016/S0925-8388(96)03017-4 CrossrefGoogle Scholar
  • 28 P. Gegenwart, C. Langhammer, C. Geibel, R. Helfrich, M. Lang, G. Sparn, F. Steglich, R. Horn, L. Donnevert, A. Link, and W. Assmus, Phys. Rev. Lett. 81, 1501 (1998). 10.1103/PhysRevLett.81.1501 CrossrefGoogle Scholar
  • 29 O. Stockert, E. Faulhaber, G. Zwicknagl, N. Stüßer, H. S. Jeevan, M. Deppe, R. Borth, R. Küchler, M. Loewenhaupt, C. Geibel, and F. Steglich, Phys. Rev. Lett. 92, 136401 (2004). 10.1103/PhysRevLett.92.136401 CrossrefGoogle Scholar
  • 30 C. Cao, M. Deppe, G. Behr, W. Löser, N. Wizent, O. Kataeva, and B. Büchner, Cryst. Growth Des. 11, 431 (2011). 10.1021/cg101128w CrossrefGoogle Scholar
  • 31 T. D. Matsuda, Y. Haga, S. Ikeda, A. Galatanu, E. Yamamoto, H. Shishido, M. Yamada, J. Yamaura, M. Hedo, Y. Uwatoko, T. Matsumoto, T. Tada, S. Noguchi, T. Sugimoto, K. Kuwahara, K. Iwasa, M. Kohgi, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 74, 1552 (2005). 10.1143/JPSJ.74.1552 LinkGoogle Scholar
  • 32 N. D. Dung, Y. Ota, K. Sugiyama, T. D. Matsuda, Y. Haga, K. Kindo, M. Hagiwara, T. Takeuchi, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 78, 024712 (2009). 10.1143/JPSJ.78.024712 LinkGoogle Scholar
  • 33 A. Nakamura, F. Honda, Y. Homma, D. X. Li, Y. Shimizu, A. Maurya, Y. J. Sato, H. Harima, Y. Ōnuki, and D. Aoki, J. Phys. Soc. Jpn. 89, 094703 (2020). 10.7566/JPSJ.89.094703 LinkGoogle Scholar
  • 34 H. Harima, O. Sakai, T. Kasuya, and A. Yanase, Solid State Commun. 66, 603 (1988). 10.1016/0038-1098(88)90217-7 CrossrefGoogle Scholar
  • 35 A. Thamizhavel, H. Shishido, Y. Okuda, H. Harima, T. D. Matsuda, Y. Haga, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 75, 044711 (2006). 10.1143/JPSJ.75.044711 LinkGoogle Scholar