J. Phys. Soc. Jpn. 92, 014702 (2023) [7 Pages]
FULL PAPERS

Effect of Oxygen Hole in Li2MnO3 Revealed by Hard X-ray Photoemission Spectroscopy and Band Structure Calculations

+ Affiliations
1Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan2National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan3Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan4Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan5Department of Physics, University of Roma “La Sapienza”, Piazzale Aldo Moro 2, 00185 Roma, Italy

We have studied the electronic structure of Li2MnO3 which has been attracting interest as a promising oxygen redox type cathode material for Li ion battery. Hard x-ray photoemission spectroscopy and subsequent cluster model analysis show that the Mn valence is 4+ and that the charge transfer energy Δ is close to 0 eV. Δ of Li2MnO3 is smaller than the typical Δ values of tetravalent Mn oxides. The small Δ value suggests that the delithiation process of Li2MnO3 is dominated by electron removal from the O 2p orbitals. In addition to the ground state properties of Li2MnO3, effect of Li or oxygen vacancy on the electronic structure is examined by means of band structure calculations. The Li vacancy drives the system metallic due to itinerant O 2p holes while the system with oxygen vacancy remains an insulator.

©2023 The Physical Society of Japan

References

  • 1 K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980). 10.1016/0025-5408(80)90012-4 CrossrefGoogle Scholar
  • 2 E. Plichta, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W. B. Ebner, and H. W. Lin, J. Electrochem. Soc. 136, 1865 (1989). 10.1149/1.2097063 CrossrefGoogle Scholar
  • 3 H. F. Gibbard, J. Power Sources 26, 81 (1989). 10.1016/0378-7753(89)80017-5 CrossrefGoogle Scholar
  • 4 T. Nagura and K. Tazawa, Prog. Batteries Sol. Cells 9, 20 (1990). Google Scholar
  • 5 T. Ohzuku and Y. Makimura, Chem. Lett. 30, 744 (2001). 10.1246/cl.2001.744 CrossrefGoogle Scholar
  • 6 B. L. Cushing and J. B. Goodenough, Solid State Sci. 4, 1487 (2002). 10.1016/S1293-2558(02)00044-4 CrossrefGoogle Scholar
  • 7 J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F. M. F. de Groot, and T. S. Turner, Phys. Rev. B 44, 6090 (1991). 10.1103/PhysRevB.44.6090 CrossrefGoogle Scholar
  • 8 J. van Elp, H. Eskes, P. Kuiper, and G. A. Sawatzky, Phys. Rev. B 45, 1612 (1992). 10.1103/PhysRevB.45.1612 CrossrefGoogle Scholar
  • 9 T. Mizokawa, Y. Wakisaka, T. Sudayama, C. Iwai, K. Miyoshi, J. Takeuchi, H. Wadati, D. G. Hawthorn, T. Z. Regier, and G. A. Sawatzky, Phys. Rev. Lett. 111, 056404 (2013). 10.1103/PhysRevLett.111.056404 CrossrefGoogle Scholar
  • 10 M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. B. Hassine, L. Dupont, and J. M. Tarascon, Nat. Mater. 12, 827 (2013). 10.1038/nmat3699 CrossrefGoogle Scholar
  • 11 E. McCalla, A. M. Abakumov, M. Saubanere, D. Foix, E. Berg, J. Rousse, M. L. Doublet, D. Gonbeau, P. Novak, G. van Tendeloo, R. Dominko, and J. M. Tarascon, Science 350, 1516 (2015). 10.1126/science.aac8260 CrossrefGoogle Scholar
  • 12 K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, and P. G. Bruce, Nat. Chem. 8, 684 (2016). 10.1038/nchem.2471 CrossrefGoogle Scholar
  • 13 M. Okubo and A. Yamada, ACS Appl. Mater. Interfaces 9, 36463 (2017). 10.1021/acsami.7b09835 CrossrefGoogle Scholar
  • 14 P. Strobel and B. Lambert-Andron, J. Solid State Chem. 75, 90 (1988). 10.1016/0022-4596(88)90305-2 CrossrefGoogle Scholar
  • 15 K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 10.1107/S0021889811038970 CrossrefGoogle Scholar
  • 16 M. Oishi, K. Yamanaka, I. Watanabe, K. Shimoda, T. Matsunaga, H. Arai, Y. Ukyo, Y. Uchimoto, Z. Ogumi, and T. Ohta, J. Mater. Chem. A 4, 9293 (2016). 10.1039/C6TA00174B CrossrefGoogle Scholar
  • 17 T. Sudayama, K. Uehara, T. Mukai, D. Asakura, X.-M. Shi, A. Tsuchimoto, B. Mortemard de Boisse, T. Shimada, E. Watanabe, Y. Harada, M. Nakayama, M. Okubo, and A. Yamada, Energy Environ. Sci. 13, 1492 (2020). 10.1039/C9EE04197D CrossrefGoogle Scholar
  • 18 M. Cheng, W. Tang, Y. Li, and K. Zhu, Catal. Today 274, 116 (2016). 10.1016/j.cattod.2016.01.040 CrossrefGoogle Scholar
  • 19 Y. Li, F. Wang, H. Zhai, D. Wang, N. Yang, S. Chen, and K. Chen, Ionics 26, 683 (2020). 10.1007/s11581-019-03270-4 CrossrefGoogle Scholar
  • 20 K. Shimoda, T. Minato, K. Nakanishi, H. Komatsu, T. Matsunaga, H. Tanida, H. Arai, Y. Ukyo, Y. Uchimoto, and Z. Ogumi, J. Mater. Chem. A 4, 5909 (2016). 10.1039/C6TA01152G CrossrefGoogle Scholar
  • 21 A. Quesne-Turin, D. Flahaut, L. Croguennec, G. Vallverdu, J. Allouche, Y. Charles-Blin, J. Chotard, M. Ménétrier, and I. Baraille, ACS Appl. Mater. Interfaces 9, 44222 (2017). 10.1021/acsami.7b14826 CrossrefGoogle Scholar
  • 22 X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, N. Alonso-Vante, C.-W. Wang, W.-B. Wu, H.-J. Lin, C.-T. Chen, Z. Hu, Y. Huang, and J. Ma, Nat. Commun. 12, 3136 (2021). 10.1038/s41467-021-23430-3 CrossrefGoogle Scholar
  • 23 A. Quesne-Turin, D. Flahaut, G. S. Vallverdu, L. Croguennec, J. Allouche, F. Weill, M. Ménétrier, and I. Baraille, Appl. Surf. Sci. 542, 148514 (2021). 10.1016/j.apsusc.2020.148514 CrossrefGoogle Scholar
  • 24 E. Ikenaga, M. Kobata, H. Matsuda, T. Sugiyama, H. Daimon, and K. Kobayashi, J. Electron Spectrosc. Relat. Phenom. 190, 180 (2013). 10.1016/j.elspec.2013.04.004 CrossrefGoogle Scholar
  • 25 E. Ikenaga, A. Yasui, N. Kawamura, M. Mizumaki, S. Tsutsui, and K. Mimura, Synchrotron Radiat. News 31, 10 (2018). 10.1080/08940886.2018.1483652 CrossrefGoogle Scholar
  • 26 S. Ouardi, G. H. Fecher, and C. Felser, J. Electron Spectrosc. Relat. Phenom. 190, 249 (2013). 10.1016/j.elspec.2013.09.001 CrossrefGoogle Scholar
  • 27 K. Kobayashi, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira, T. Hattori, Y. Sugita, O. Nakatsuka, A. Sakai, and S. Zaima, Appl. Phys. Lett. 83, 1005 (2003). 10.1063/1.1595714 CrossrefGoogle Scholar
  • 28 K. Kobayashi, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 32 (2009). 10.1016/j.nima.2008.12.188 CrossrefGoogle Scholar
  • 29 K. Kobayashi, Nucl. Instrum. Methods Phys. Res., Sect. A 547, 98 (2005). 10.1016/j.nima.2005.05.016 CrossrefGoogle Scholar
  • 30 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502 CrossrefGoogle Scholar
  • 31 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017). 10.1088/1361-648X/aa8f79 CrossrefGoogle Scholar
  • 32 A. E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and A. Fujimori, Phys. Rev. B 46, 3771 (1992). 10.1103/PhysRevB.46.3771 CrossrefGoogle Scholar
  • 33 T. Mizokawa, A. Fujimori, T. Arima, Y. Tokura, N. Mori, and J. Akimitsu, Phys. Rev. 52, 13865 (1995). 10.1103/PhysRevB.52.13865 CrossrefGoogle Scholar
  • 34 F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990). 10.1103/PhysRevB.42.5459 CrossrefGoogle Scholar
  • 35 K. Okada and A. Kotani, J. Electron Spectrosc. Relat. Phenom. 71, R1 (1995). 10.1016/0368-2048(94)02276-3 CrossrefGoogle Scholar
  • 36 T. Yamaguchi, M. Okawa, H. Wadati, T. Z. Regier, T. Saitoh, Y. Takagi, A. Yasui, M. Isobe, Y. Ueda, and T. Mizokawa, J. Phys. Soc. Jpn. 91, 074704 (2022). 10.7566/JPSJ.91.074704 LinkGoogle Scholar
  • 37 G. Zampieri, M. Abbate, F. Prado, A. Caneiro, and E. Morikawa, Physica B 320, 51 (2002). 10.1016/S0921-4526(02)00618-X CrossrefGoogle Scholar
  • 38 Y. Yokoyama, D. Ootsuki, T. Sugimoto, H. Wadati, J. Okabayashi, X. Yang, F. Du, G. Chen, and T. Mizokawa, Appl. Phys. Lett. 107, 033903 (2015). 10.1063/1.4927239 CrossrefGoogle Scholar
  • 39 Y. Koyama, I. Tanaka, M. Nagao, and R. Kanno, J. Power Sources 189, 798 (2009). 10.1016/j.jpowsour.2008.07.073 CrossrefGoogle Scholar
  • 40 Y. Okamoto, J. Electrochem. Soc. 159, A152 (2011). 10.1149/2.079202jes CrossrefGoogle Scholar
  • 41 R. Xiao, H. Li, and L. Chen, Chem. Mater. 24, 4242 (2012). 10.1021/cm3027219 CrossrefGoogle Scholar
  • 42 E. Lee and K. A. Persson, Adv. Energy Mater. 4, 1400498 (2014). 10.1002/aenm.201400498 CrossrefGoogle Scholar
  • 43 X. Tan, R. Liu, C. Xie, and Q. Shen, J. Power Sources 374, 134 (2018). 10.1016/j.jpowsour.2017.11.004 CrossrefGoogle Scholar
  • 44 D. Qian, B. Xu, M. Chi, and Y. S. Meng, Phys. Chem. Chem. Phys. 16, 14665 (2014). 10.1039/C4CP01799D CrossrefGoogle Scholar