J. Phys. Soc. Jpn. 92, 054705 (2023) [7 Pages]
FULL PAPERS

Magnetic Anisotropy in a Verdazyl-Based Complex with Cobalt(II)

+ Affiliations
1Department of Physical Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan2Department of Physics, College of Humanities and Sciences, Nihon University, Setagaya, Tokyo 156-8550, Japan3Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

A verdazyl-based complex with Co2+ ion, (p-Py-V-p-Br)2[Co(hfac)2], was successfully synthesized. The molecular arrangement indicates that spins on the radical and Co form a one-dimensional (1D) spin chain, where the intermolecular interaction between the radicals and the intramolecular interaction between the radical and Co exhibit threefold periodicity. The strong antiferromagnetic interaction between radical spins forms a nonmagnetic singlet dimer, yielding paramagnetic behavior associated with the residual spins on the Co2+ ion in the low-temperature region. We evaluated the anisotropic g values by analyzing the electron spin resonance powder patterns. Furthermore, we considered the spin–orbit coupling and distorted crystal fields of the Co2+ ion and explained the triaxial anisotropic behavior. We also evaluated the anisotropy of the expected effective exchange interaction between the fictitious spins on the Co2+ ions, indicating the existence of an Ising-like exchange interaction. These results demonstrate that the strong spin–orbit coupling of the Co2+ ion in the present verdazyl-based compound yields an effective spin-1/2 with anisotropic g values and Ising-like exchange interactions.

©2023 The Physical Society of Japan

References

  • 1 A. Kitaev, Ann. Phys. 321, 2 (2006). 10.1016/j.aop.2005.10.005 CrossrefGoogle Scholar
  • 2 G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009). 10.1103/PhysRevLett.102.017205 CrossrefGoogle Scholar
  • 3 K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. Vijay Shankar, Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, Phys. Rev. B 90, 041112(R) (2014). 10.1103/PhysRevB.90.041112 CrossrefGoogle Scholar
  • 4 L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and K. S. Burch, Phys. Rev. Lett. 114, 147201 (2015). 10.1103/PhysRevLett.114.147201 CrossrefGoogle Scholar
  • 5 A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. Nagler, Science 356, 1055 (2017). 10.1126/science.aah6015 CrossrefGoogle Scholar
  • 6 Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010). 10.1103/PhysRevB.82.064412 CrossrefGoogle Scholar
  • 7 Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, 127203 (2012). 10.1103/PhysRevLett.108.127203 CrossrefGoogle Scholar
  • 8 K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi, Nature (London) 554, 341 (2018). 10.1038/nature25482 CrossrefGoogle Scholar
  • 9 H. Liu and G. Khaliullin, Phys. Rev. B 97, 014407 (2018). 10.1103/PhysRevB.97.014407 CrossrefGoogle Scholar
  • 10 R. Sano, Y. Kato, and Y. Motome, Phys. Rev. B 97, 014408 (2018). 10.1103/PhysRevB.97.014408 CrossrefGoogle Scholar
  • 11 H. Liu, J. Chaloupka, and G. Khaliullin, Phys. Rev. Lett. 125, 047201 (2020). 10.1103/PhysRevLett.125.047201 CrossrefGoogle Scholar
  • 12 M. Songvilay, J. Robert, S. Petit, J. A. Rodriguez-Rivera, W. D. Ratcliff, F. Damay, V. Balédent, M. Jiménez-Ruiz, P. Lejay, E. Pachoud, A. Hadj-Azzem, V. Simonet, and C. Stock, Phys. Rev. B 102, 224429 (2020). 10.1103/PhysRevB.102.224429 CrossrefGoogle Scholar
  • 13 M. Iakovleva, T. Petersen, A. Alfonsov, Y. Skourski, H.-J. Grafe, E. Vavilova, R. Nath, L. Hozoi, and V. Kataev, Phys. Rev. Mater. 6, 094413 (2022). 10.1103/PhysRevMaterials.6.094413 CrossrefGoogle Scholar
  • 14 B. D. Koivisto and R. G. Hicks, Coord. Chem. Rev. 249, 2612 (2005). 10.1016/j.ccr.2005.03.012 CrossrefGoogle Scholar
  • 15 C. W. Johnston, S. D. J. McKinnon, B. O. Patrick, and R. G. Hicks, Dalton Trans. 42, 16829 (2013). 10.1039/c3dt52191e CrossrefGoogle Scholar
  • 16 T. M. Barclay, R. G. Hicks, M. T. Lemaire, and L. K. Thompson, Inorg. Chem. 40, 5581 (2001). 10.1021/ic010542x CrossrefGoogle Scholar
  • 17 S. D. J. McKinnon, B. O. Patrick, A. B. P. Lever, and R. G. Hicks, Inorg. Chem. 52, 8053 (2013). 10.1021/ic400704j CrossrefGoogle Scholar
  • 18 D. J. R. Brook, V. Lynch, C. Conklin, and M. A. Fox, J. Am. Chem. Soc. 119, 5155 (1997). 10.1021/ja961675y CrossrefGoogle Scholar
  • 19 H. Yamaguchi, K. Iwase, T. Ono, T. Shimokawa, H. Nakano, Y. Shimura, N. Kase, S. Kittaka, T. Sakakibara, T. Kawakami, and Y. Hosokoshi, Phys. Rev. Lett. 110, 157205 (2013). 10.1103/PhysRevLett.110.157205 CrossrefGoogle Scholar
  • 20 H. Yamaguchi, T. Okubo, K. Iwase, T. Ono, Y. Kono, S. Kittaka, T. Sakakibara, A. Matsuo, K. Kindo, and Y. Hosokoshi, Phys. Rev. B 88, 174410 (2013). 10.1103/PhysRevB.88.174410 CrossrefGoogle Scholar
  • 21 H. Yamaguchi, H. Miyagai, M. Yoshida, M. Takigawa, K. Iwase, T. Ono, N. Kase, K. Araki, S. Kittaka, T. Sakakibara, T. Shimokawa, T. Okubo, K. Okunishi, A. Matsuo, and Y. Hosokoshi, Phys. Rev. B 89, 220402 (2014). 10.1103/PhysRevB.89.220402 CrossrefGoogle Scholar
  • 22 H. Yamaguchi, T. Okubo, S. Kittaka, T. Sakakibara, K. Araki, K. Iwase, N. Amaya, T. Ono, and Y. Hosokoshi, Sci. Rep. 5, 15327 (2015). 10.1038/srep15327 CrossrefGoogle Scholar
  • 23 H. Yamaguchi, Y. Tamekuni, Y. Iwasaki, and Y. Hosokoshi, Phys. Rev. B 97, 201109(R) (2018). 10.1103/PhysRevB.97.201109 CrossrefGoogle Scholar
  • 24 H. Yamaguchi, Y. Sasaki, T. Okubo, M. Yoshida, T. Kida, M. Hagiwara, Y. Kono, S. Kittaka, T. Sakakibara, M. Takigawa, Y. Iwasaki, and Y. Hosokoshi, Phys. Rev. B 98, 094402 (2018). 10.1103/PhysRevB.98.094402 CrossrefGoogle Scholar
  • 25 H. Yamaguchi, Y. Iwasaki, Y. Kono, T. Okubo, S. Miyamoto, Y. Hosokoshi, A. Matsuo, T. Sakakibara, T. Kida, and M. Hagiwara, Phys. Rev. B 103, L220407 (2021). 10.1103/PhysRevB.103.L220407 CrossrefGoogle Scholar
  • 26 H. Yamaguchi, Y. Shinpuku, T. Shimokawa, K. Iwase, T. Ono, Y. Kono, S. Kittaka, T. Sakakibara, and Y. Hosokoshi, Phys. Rev. B 91, 085117 (2015). 10.1103/PhysRevB.91.085117 CrossrefGoogle Scholar
  • 27 H. Yamaguchi, Y. Shinpuku, Y. Kono, S. Kittaka, T. Sakakibara, M. Hagiwara, T. Kawakami, K. Iwase, T. Ono, and Y. Hosokoshi, Phys. Rev. B 93, 115145 (2016). 10.1103/PhysRevB.93.115145 CrossrefGoogle Scholar
  • 28 H. Yamaguchi, M. Okada, Y. Kono, S. Kittaka, T. Sakakibara, T. Okabe, Y. Iwasaki, and Y. Hosokoshi, Sci. Rep. 7, 16144 (2017). 10.1038/s41598-017-16431-0 CrossrefGoogle Scholar
  • 29 N. Uemoto, Y. Kono, S. Kittaka, T. Sakakibara, T. Yajima, Y. Iwasaki, S. Miyamoto, Y. Hosokoshi, and H. Yamaguchi, Phys. Rev. B 99, 094418 (2019). 10.1103/PhysRevB.99.094418 CrossrefGoogle Scholar
  • 30 Y. Kono, T. Okabe, N. Uemoto, Y. Iwasaki, Y. Hosokoshi, S. Kittaka, T. Sakakibara, and H. Yamaguchi, Phys. Rev. B 101, 014437 (2020). 10.1103/PhysRevB.101.014437 CrossrefGoogle Scholar
  • 31 Y. Iwasaki, T. Okabe, N. Uemoto, Y. Kono, Y. Hosokoshi, S. Nakamura, S. Kittaka, T. Sakakibara, M. Hagiwara, T. Kawakami, and H. Yamaguchi, Phys. Rev. B 101, 174412 (2020). 10.1103/PhysRevB.101.174412 CrossrefGoogle Scholar
  • 32 H. Yamaguchi, N. Uemoto, T. Okubo, Y. Kono, S. Kittaka, T. Sakakibara, T. Yajima, S. Shimono, Y. Iwasaki, and Y. Hosokoshi, Phys. Rev. B 104, L060411 (2021). 10.1103/PhysRevB.104.L060411 CrossrefGoogle Scholar
  • 33 H. Tsukiyama, S. Morota, S. Shimono, Y. Iwasaki, M. Hagiwara, Y. Hosokoshi, and H. Yamaguchi, Phys. Rev. Mater. 6, 094417 (2022). 10.1103/PhysRevMaterials.6.094417 CrossrefGoogle Scholar
  • 34 H. Yamaguchi, S. C. Furuya, S. Morota, S. Shimono, T. Kawakami, Y. Kusanose, Y. Shimura, K. Nakano, and Y. Hosokoshi, Phys. Rev. B 106, L100404 (2022). 10.1103/PhysRevB.106.L100404 CrossrefGoogle Scholar
  • 35 R. Kuhn, Angew. Chem. 76, 691 (1964). 10.1002/ange.19640761532 CrossrefGoogle Scholar
  • 36 M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, and R. Spagna, J. Appl. Crystallogr. 38, 381 (2005). 10.1107/S002188980403225X CrossrefGoogle Scholar
  • 37 G. M. Sheldrick, SHELXL97, Program for Crystal Structure Determination (University of Göttingen, Germany, 1997). Google Scholar
  • 38 M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, and K. Yamaguchi, Chem. Phys. Lett. 432, 343 (2006). 10.1016/j.cplett.2006.10.023 CrossrefGoogle Scholar
  • 39 L. Freitag, S. Knecht, C. Angeli, and M. Reiher, J. Chem. Theory Comput. 13, 451 (2017). 10.1021/acs.jctc.6b00778 CrossrefGoogle Scholar
  • 40 Y. Nakagawa, T. Kashiwagi, H. Yamaguchi, S. Kimura, Z. Honda, K. Yamada, K. Kindo, and M. Hagiwara, J. Phys. Soc. Jpn. 75, 124708 (2006). 10.1143/JPSJ.75.124708 LinkGoogle Scholar
  • 41 Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Phys. Rev. Lett. 108, 057205 (2012). 10.1103/PhysRevLett.108.057205 CrossrefGoogle Scholar
  • 42 X. C. Liu, Z. W. Ouyang, T. T. Xiao, J. J. Cao, Z. X. Wang, Z. C. Xia, Z. Z. He, and W. Tong, Phys. Rev. B 105, 134417 (2022). 10.1103/PhysRevB.105.134417 CrossrefGoogle Scholar
  • 43 H. Yamaguchi, S. Nagata, M. Tada, K. Iwase, T. Ono, S. Nishihara, Y. Hosokoshi, T. Shimokawa, H. Nakano, H. Nojiri, A. Matsuo, K. Kindo, and T. Kawakami, Phys. Rev. B 87, 125120 (2013). 10.1103/PhysRevB.87.125120 CrossrefGoogle Scholar
  • 44 H. Yamaguchi, Y. Tamekuni, Y. Iwasaki, R. Otsuka, Y. Hosokoshi, T. Kida, and M. Hagiwara, Phys. Rev. B 95, 235135 (2017). 10.1103/PhysRevB.95.235135 CrossrefGoogle Scholar
  • 45 D. V. Korchagin, A. V. Palii, E. A. Yureva, A. V. Akimov, E. Y. Misochko, G. V. Shilov, A. D. Talantsev, R. B. Morgunov, A. A. Shakin, S. M. Aldoshin, and B. S. Tsukerblat, Dalton Trans. 46, 7540 (2017). 10.1039/C7DT01236E CrossrefGoogle Scholar
  • 46 E. Y. Misochko, A. V. Akimov, D. V. Korchagin, J. Nehrkorn, M. Ozerov, A. V. Palii, J. M. Clemente-Juan, and S. M. Aldoshin, Inorg. Chem. 58, 16434 (2019). 10.1021/acs.inorgchem.9b02195 CrossrefGoogle Scholar
  • 47 N. Kinoshita, M. Tokumoto, H. Anzai, and G. Saito, J. Phys. Soc. Jpn. 54, 4498 (1985). 10.1143/JPSJ.54.4498 LinkGoogle Scholar
  • 48 H.-A. Krug von Nidda, L. E. Svistov, M. V. Eremin, R. M. Eremina, A. Loidl, V. Kataev, A. Validov, A. Prokofiev, and W. Aßmus, Phys. Rev. B 65, 134445 (2002). 10.1103/PhysRevB.65.134445 CrossrefGoogle Scholar
  • 49 V. J. McBrierty, Phys. Educ. 9, 102 (1974). 10.1088/0031-9120/9/2/009 CrossrefGoogle Scholar
  • 50 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1986) p. 122. Google Scholar
  • 51 A. Abragam and M. H. L. Pryce, Proc. R. Soc. A 206, 173 (1951). 10.1098/rspa.1951.0063 CrossrefGoogle Scholar
  • 52 M. E. Lines, Phys. Rev. 131, 546 (1963). 10.1103/PhysRev.131.546 CrossrefGoogle Scholar
  • 53 F. Lloret, M. Julve, J. Cano, R. Ruiz-García, and E. Pardo, Inorg. Chim. Acta 361, 3432 (2008). 10.1016/j.ica.2008.03.114 CrossrefGoogle Scholar
  • 54 H. Yamaguchi, A. Toho, K. Iwase, T. Ono, T. Kawakami, T. Shimokawa, A. Matsuo, and Y. Hosokoshi, J. Phys. Soc. Jpn. 82, 043713 (2013). 10.7566/JPSJ.82.043713 LinkGoogle Scholar
  • 55 T. Okabe, H. Yamaguchi, S. Kittaka, T. Sakakibara, T. Ono, and Y. Hosokoshi, Phys. Rev. B 95, 075120 (2017). 10.1103/PhysRevB.95.075120 CrossrefGoogle Scholar
  • 56 K. Iwase, H. Yamaguchi, T. Ono, T. Shimokawa, H. Nakano, A. Matsuo, K. Kindo, H. Nojiri, and Y. Hosokoshi, J. Phys. Soc. Jpn. 82, 074719 (2013). 10.7566/JPSJ.82.074719 LinkGoogle Scholar
  • 57 S. Miyamoto, Y. Iwasaki, N. Uemoto, Y. Hosokoshi, H. Fujiwara, S. Shimono, and H. Yamaguchi, Phys. Rev. Mater. 3, 064410 (2019). 10.1103/PhysRevMaterials.3.064410 CrossrefGoogle Scholar