- Full text:
- PDF (eReader) / PDF (Download) (4329 kB)
We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2.
The term heavy fermions refers to electronic quasiparticles (QPs) with a strongly renormalized mass compared to free electrons. Hybridization between localized f-electronic states and conduction electrons is a pathway for heavy fermion formation. These QPs are the starting point for a plethora of exotic quantum matter states. Superconductivity,1) magnetism and multipole ordered2,3) phases have been realized in this fashion. Very often, these phases are highly sensitive to external tuning parameters such as pressure or magnetic fields. Two superconducting phases have, for example, been identified as a function of hydrostatic pressure in CeCu2Si2.4) The symmetry of the superconducting order parameters is still being debated. The very same material also has a so-called A-phase that is magnetically ordered.5) Another example is URu2Si2 that also hosts an unconventional superconducting state inside a hidden-order phase with an unresolved symmetry breaking.6–8) These phases vanish upon application of magnetic field and are replaced by a magnetic ground state. Here, we consider CeRu2Si2 that undergoes a metamagnetic transition at a magnetic field of just 7 T. On both sides of the transition, the QP masses inferred from quantum oscillation experiments only account for 20% of the observed electronic specific heat.9,10) The heavy fermion Fermi surface structures have therefore not been detected by quantum oscillation experiments.
It is commonly believed that the heavy fermion QPs are a dominant factor in these materials' low-energy electronic structures and responsible for the highly tunable phase diagrams. A profound characterization of the QP nature is therefore desired. Resonant angle-resolved photoemission spectroscopy (ARPES), applied across a wide selection of Ce-based compounds, has provided insight into the f-electronic spectral weight folded into low-energy QPs.11–22) By tuning the incident photons to the Ce-Fano-resonance, sensitivity to f-electronic spectral weight is enhanced. In this fashion, the f-electron contribution to the QPs residing on the Fermi surface is probed. Yet, the orbital composition of these QPs remains difficult to disentangle. In the case of CeRu2Si2 and related 122-compounds, the localized f states split into two levels,
Here we use a combination of resonant and light polarization dependent ARPES to elucidate the orbital structure of the heavy fermions in CeRu2Si2. In contrast to several previous ARPES studies,23,24) we probe the Ce 121 eV Fano resonance25,26) using high-resolution instrumentation. On both Si- and Ce-terminated surfaces, strong hybridization between localized f states and conduction bands (
High quality single crystals were grown using the Czochralski technique and have previously been used for magneto-resistance measurements.9,10) ARPES experiments were carried out at the Cassiopee and I0527) beam lines at the Soleil synchrotron and the Diamond Light Source, respectively. The crystals were cleaved using a standard top-post. Electrical contact between the crystal and the cryostat was obtained using EpoTek H20E Ag epoxy. Incident photon energies 90 eV (off-resonance) and 121 eV (on-resonance) were used in combination with horizontal π and vertical σ linear light polarizations. A vertical analyser slit configuration was used throughout this work. We denote
On- and off-resonance ARPES spectra collected along high symmetry direction on a Ce-terminated surface, shown in Figs. 1(a)–1(c) and 1(e)–1(g), reveal a rich band structure. Numerous dispersive bands are observed along with the non-dispersive Ce
Figure 1. (Color online) High-symmetry band structure and Fermi surface from a Ce-terminated surface. The first and second rows are recorded using photons tuned to be off- or on-resonance, respectively. Under both conditions, the band structure along high symmetry directions is displayed in (a)–(c) and (e)–(g). On- and off-resonance Fermi surface maps were recorded at 13 K (d, h). Colored dashed lines indicate the high-symmetry trajectories along which the band structure is displayed in (a)–(c) and (e)–(g). Panels (i) and (j) show the Fermi surface along the
Several Fermi surface sheets can be identified. A small electron pocket [labeled γ in Fig. 2(a)] is found around the Y1-point. Around the zone center, Z, a small (α) and a slightly larger (β) Fermi surface sheet are observed. They form the inner part of a flower-like shape, indicated with a dotted line in Fig. 1(h). The smaller α Fermi surface sheet displays a pronounced enhancement under resonant illumination, compare Figs. 1(b) and 1(c) with Figs. 1(f) and 1(g). This resonance effect implies that f-electronic spectral weight is folded into the low-energy QPs. The orbital nature of these composed QPs is our central point of focus here.
Figure 2. (Color online) Zone corner band structure from Si-terminated Fermi surface. (a, b), (e, f) Band structure along the Z-Y1 directions recorded with linear horizontal (π) and vertical (σ) light polarization for temperatures as indicated. (c, d), (g, h) Intensity difference I(36 K)–I(9 K) for the two polarizations at the resonance and off-resonance. The color scale is organized so that white indicates no difference, red indicates intensity gain and blue intensity loss upon heating. The color scale of the off resonance difference spectra (d, h) has been enhanced by 500% in order to make features visible at all. On the resonance, loss and gain traces the band structure whereas the off-resonance differences are generally a factor of 5 weaker and appear rather random.
When rare earth ions are surrounded by Si layers the chemical surrounding resembles that of the bulk.11,33) In principle, by addressing the Si-terminated surface we ensure that the observed f-electron physics represents the bulk properties, rather than those of surface Ce atoms. Surface effects are, however, commonly observed in related systems. In particular, the absent
Band structure along the Z-Y1 direction is systematically collected with on- and off-resonance, σ and π light polarization, and as a function of temperature up to 36 K (Figs. 2 and 3). The on-resonance data displayed in Figs. 2 and 3 exhibits a clear temperature dependence around the Fermi level. Here band structure changes as a function of temperature seem to occur [Figs. 2(c), 2(d), 2(g), 2(h), and 3]. We also notice that the spectral weight of the conduction bands seems to change even far from the Fermi level [Figs. 2(c) and 2(d)]. The off-resonance data by contrast display little or no temperature dependence [Figs. 2(d) and 2(h)], as expected. Altogether, this suggests that the observed resonant temperature dependence is associated with the
Figure 3. (Color online) Temperature dependence of quasiparticles. Energy distribution maps recorded on the Ce-resonance along the Z-Y1 direction for different temperatures. Top (bottom) panels are recorded with π (σ) light polarization. Solid lines are momentum distribution curves, integrated over a binding energy (
The γ-band forms a Dirac-cone like structure around the Y1-point. This band is only observed in the π channel and vanishes when σ polarization is used [see Figs. 2(a) and 2(e)]. The direct implication is that this band has even orbital character with respect to the photoemission mirror plane.37,38) We also stress that this band does not display any significant resonance effects. It does therefore not seem to hybridize with the f-electronic states. Furthermore, it should be pointed out that we do not observe any
The band structure around the zone center (Γ- and Z-points) also displays a strong dependence on light polarization, on/off resonance condition and temperature. With π polarization, a hole-like band structure (labeled α) is found at the lowest measured temperature. By contrast in the σ channel an electron-like structure accompanied with two resonance structures are observed around the Z-point [Figs. 2(a) and 2(e)]. Both the hole-like structure and the resonances found in the π and σ channels, respectively, are weakened in spectral weight as temperature is increased [Figs. 2(c), 2(g), and 3]. These are the observations that we are going to use in the following to elucidate the orbital nature of the
We now turn to an analysis of the
The tetrahedral crystal field environment splits the Ru d-orbitals into
We are now ready to make our first conclusions. The γ band around the Y1-point displays even character and no significant resonance effect. This band does therefore not hybridize with the localized f-states. By evaluating
|
The β band around the Z-point completely disappears under π illumination. We can therefore assign odd orbital character to this band and thus, the orbitals
Figure 3 presents a more detailed view of the temperature effect shown in Figs. 2(c), 2(d), 2(g), and 2(h). Both from the spectra and the momentum distribution curves it becomes clear that the α and β features selectively lose spectral weight when the temperature is increased beyond this system's Kondo temperature
The observation of
It is commonly believed that tunable phases of CeCu2Si2 (superconductivity) and CeRu2Si2 (metamagnetic transition) are rooted in the heavy fermion QPs formed by the
We close the discussion with a remark on the relative hybridization overlaps with the
In summary, we have carried out a high resolution on- and off-resonance ARPES study of CeRu2Si2. The resonance ARPES data suggest
Acknowledgments
K.P.K., M.H., Q.W., K.v.A., and J.C. acknowledge support by the Swiss National Science Foundation. Y.S. is funded by the Swedish Research Council (VR) with a Starting Grant (Dnr. 2017-05078) as well as Chalmers Area Of Advance-Materials Science. ARPES measurements were carried out at the I05 and Cassiopee beamlines of the Diamond Light Source and Soleil synchrotron, respectively.
References
- 1 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979). 10.1103/PhysRevLett.43.1892 Crossref, Google Scholar
- 2 T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 83, 140512 (2011). 10.1103/PhysRevB.83.140512 Crossref, Google Scholar
- 3 H. Watanabe and Y. Yanase, Phys. Rev. B 98, 245129 (2018). 10.1103/PhysRevB.98.245129 Crossref, Google Scholar
- 4 L. V. Pourovskii, P. Hansmann, M. Ferrero, and A. Georges, Phys. Rev. Lett. 112, 106407 (2014). 10.1103/PhysRevLett.112.106407 Crossref, Google Scholar
- 5 O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Nat. Phys. 7, 119 (2010). 10.1038/nphys1852 Crossref, Google Scholar
- 6 J. A. Mydosh and P. M. Oppeneer, Rev. Mod. Phys. 83, 1301 (2011). 10.1103/RevModPhys.83.1301 Crossref, Google Scholar
- 7 S. Ghosh, M. Matty, R. Baumbach, E. D. Bauer, K. A. Modic, A. Shekhter, J. A. Mydosh, E.-A. Kim, and B. J. Ramshaw, Sci. Adv. 6, eaaz4074 (2020). 10.1126/sciadv.aaz4074 Crossref, Google Scholar
- 8 J. Choi, O. Ivashko, N. Dennler, D. Aoki, K. von Arx, S. Gerber, O. Gutowski, M. H. Fischer, J. Strempfer, M. v. Zimmermann, and J. Chang, Phys. Rev. B 98, 241113 (2018). 10.1103/PhysRevB.98.241113 Crossref, Google Scholar
- 9 R. Daou, C. Bergemann, and S. R. Julian, Phys. Rev. Lett. 96, 026401 (2006). 10.1103/PhysRevLett.96.026401 Crossref, Google Scholar
- 10 H. Pfau, R. Daou, M. Brando, and F. Steglich, Phys. Rev. B 85, 035127 (2012). 10.1103/PhysRevB.85.035127 Crossref, Google Scholar
- 11 S. Patil, A. Generalov, M. Güttler, P. Kushwaha, A. Chikina, K. Kummer, T. C. Rödel, A. F. Santander-Syro, N. Caroca-Canales, C. Geibel, S. Danzenbächer, Yu. Kucherenko, C. Laubschat, J. W. Allen, and D. V. Vyalikh, Nat. Commun. 7, 11029 (2016). 10.1038/ncomms11029 Crossref, Google Scholar
- 12 S. Danzenbächer, D. V. Vyalikh, K. Kummer, C. Krellner, M. Holder, M. Höppner, Yu. Kucherenko, C. Geibel, M. Shi, L. Patthey, S. L. Molodtsov, and C. Laubschat, Phys. Rev. Lett. 107, 267601 (2011). 10.1103/PhysRevLett.107.267601 Crossref, Google Scholar
- 13 M. Höppner, S. Seiro, A. Chikina, A. Fedorov, M. Güttler, S. Danzenbächer, A. Generalov, K. Kummer, S. Patil, S. L. Molodtsov, Y. Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat, and D. V. Vyalikh, Nat. Commun. 4, 1646 (2013). 10.1038/ncomms2654 Crossref, Google Scholar
- 14 K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, A. Generalov, S. Danzenbächer, S. Seiro, A. Hannaske, C. Krellner, Yu. Kucherenko, M. Shi, M. Radovic, E. Rienks, G. Zwicknagl, K. Matho, J. W. Allen, C. Laubschat, C. Geibel, and D. V. Vyalikh, Phys. Rev. X 5, 011028 (2015). 10.1103/PhysRevX.5.011028 Crossref, Google Scholar
- 15 S. Jang, J. D. Denlinger, J. W. Allen, V. S. Zapf, M. B. Maple, J. N. Kim, B. G. Jang, and J. H. Shim, Proc. Natl. Acad. Sci. U.S.A. 117, 23467 (2020). 10.1073/pnas.2001778117 Crossref, Google Scholar
- 16 Q. Y. Chen, Z. F. Ding, Z. H. Zhu, C. H. P. Wen, Y. B. Huang, P. Dudin, L. Shu, and D. L. Feng, Phys. Rev. B 101, 045105 (2020). 10.1103/PhysRevB.101.045105 Crossref, Google Scholar
- 17 A. F. Santander-Syro, M. Klein, F. L. Boariu, A. Nuber, P. Lejay, and F. Reinert, Nat. Phys. 5, 637 (2009). 10.1038/nphys1361 Crossref, Google Scholar
- 18 S. Danzenbächer, Yu. Kucherenko, C. Laubschat, D. V. Vyalikh, Z. Hossain, C. Geibel, X. J. Zhou, W. L. Yang, N. Mannella, Z. Hussain, Z.-X. Shen, and S. L. Molodtsov, Phys. Rev. Lett. 96, 106402 (2006). 10.1103/PhysRevLett.96.106402 Crossref, Google Scholar
- 19 X.-G. Zhu, Y. Liu, Y.-W. Zhao, Y.-C. Wang, Y. Zhang, C. Lu, Y. Duan, D.-H. Xie, W. Feng, D. Jian, Y.-H. Wang, S.-Y. Tan, Q. Liu, W. Zhang, Y. Liu, L.-Z. Luo, X.-B. Luo, Q.-Y. Chen, H.-F. Song, and X.-C. Lai, npj Quantum Mater. 5, 47 (2020). 10.1038/s41535-020-0248-y Crossref, Google Scholar
- 20 H. J. Im, T. Ito, H.-D. Kim, S. Kimura, K. E. Lee, J. B. Hong, Y. S. Kwon, A. Yasui, and H. Yamagami, Phys. Rev. Lett. 100, 176402 (2008). 10.1103/PhysRevLett.100.176402 Crossref, Google Scholar
- 21 Y. Wu, Y. Fang, P. Li, Z. Xiao, H. Zheng, H. Yuan, C. Cao, Y. Yang, and Y. Liu, Nat. Commun. 12, 2520 (2021). 10.1038/s41467-021-22710-2 Crossref, Google Scholar
- 22 D. Ehm, S. Hüfner, F. Reinert, J. Kroha, P. Wölfle, O. Stockert, C. Geibel, and H. v. Löhneysen, Phys. Rev. B 76, 045117 (2007). 10.1103/PhysRevB.76.045117 Crossref, Google Scholar
- 23 M. Yano, A. Sekiyama, H. Fujiwara, Y. Amano, S. Imada, T. Muro, M. Yabashi, K. Tamasaku, A. Higashiya, T. Ishikawa, Y. Ōnuki, and S. Suga, Phys. Rev. B 77, 035118 (2008). 10.1103/PhysRevB.77.035118 Crossref, Google Scholar
- 24 T. Okane, T. Ohkochi, Y. Takeda, S.-i. Fujimori, A. Yasui, Y. Saitoh, H. Yamagami, A. Fujimori, Y. Matsumoto, M. Sugi, N. Kimura, T. Komatsubara, and H. Aoki, Phys. Rev. Lett. 102, 216401 (2009). 10.1103/PhysRevLett.102.216401 Crossref, Google Scholar
- 25 A. Vittorini-Orgeas and A. Bianconi, J. Supercond. Novel Magn. 22, 215 (2009). 10.1007/s10948-008-0433-x Crossref, Google Scholar
- 26 J. D. Denlinger, G.-H. Gweon, J. W. Allen, C. G. Olson, M. B. Maple, J. L. Sarrao, P. E. Armstrong, Z. Fisk, and H. Yamagami, J. Electron Spectrosc. Relat. Phenom. 117–118, 347 (2001). 10.1016/S0368-2048(01)00257-2 Crossref, Google Scholar
- 27 M. Hoesch, T. K. Kim, P. Dudin, H. Wang, S. Scott, P. Harris, S. Patel, M. Matthews, D. Hawkins, S. G. Alcock, T. Richter, J. J. Mudd, M. Basham, L. Pratt, P. Leicester, E. C. Longhi, A. Tamai, and F. Baumberger, Rev. Sci. Instrum. 88, 013106 (2017). 10.1063/1.4973562 Crossref, Google Scholar
- 28 M. Horio, K. Hauser, Y. Sassa, Z. Mingazheva, D. Sutter, K. Kramer, A. Cook, E. Nocerino, O. K. Forslund, O. Tjernberg, M. Kobayashi, A. Chikina, N. B. M. Schröter, J. A. Krieger, T. Schmitt, V. N. Strocov, S. Pyon, T. Takayama, H. Takagi, O. J. Lipscombe, S. M. Hayden, M. Ishikado, H. Eisaki, T. Neupert, M. Månsson, C. E. Matt, and J. Chang, Phys. Rev. Lett. 121, 077004 (2018). 10.1103/PhysRevLett.121.077004 Crossref, Google Scholar
- 29 Y.-M. Xu, Y.-B. Huang, X.-Y. Cui, E. Razzoli, M. Radovic, M. Shi, G.-F. Chen, P. Zheng, N.-L. Wang, C.-L. Zhang, P.-C. Dai, J.-P. Hu, Z. Wang, and H. Ding, Nat. Phys. 7, 198 (2011). 10.1038/nphys1879 Crossref, Google Scholar
- 30 P. Vilmercati, A. Fedorov, I. Vobornik, U. Manju, G. Panaccione, A. Goldoni, A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, D. Mandrus, D. J. Singh, and N. Mannella, Phys. Rev. B 79, 220503 (2009). 10.1103/PhysRevB.79.220503 Crossref, Google Scholar
- 31 K. Kramer and J. Chang, J. Open Source Softw. 6, 2969 (2021). 10.21105/joss.02969 Crossref, Google Scholar
- 32 (Supplemental Material) More detailed discussions and observations on the Brillouin zone and about other potential causes for the observed experimental results in the temperature dependence can be found online. Google Scholar
- 33 K. Kummer, Yu. Kucherenko, S. Danzenbächer, C. Krellner, C. Geibel, M. G. Holder, L. V. Bekenov, T. Muro, Y. Kato, T. Kinoshita, S. Huotari, L. Simonelli, S. L. Molodtsov, C. Laubschat, and D. V. Vyalikh, Phys. Rev. B 84, 245114 (2011). 10.1103/PhysRevB.84.245114 Crossref, Google Scholar
- 34 J. D. Denlinger, J.-S. Kang, L. Dudy, J. W. Allen, K. Kim, J.-H. Shim, K. Haule, J. L. Sarrao, N. P. Butch, and M. B. Maple, Electron. Struct. 4, 013001 (2022). 10.1088/2516-1075/ac4315 Crossref, Google Scholar
- 35 C. Bareille, F. L. Boariu, H. Schwab, P. Lejay, F. Reinert, and A. F. Santander-Syro, Nat. Commun. 5, 4326 (2014). 10.1038/ncomms5326 Crossref, Google Scholar
- 36 T. J. Nummy, J. A. Waugh, P. S. Parham, Q. Liu, H.-Y. Yang, H. Li, X. Zhou, N. C. Plumb, F. F. Tafti, and D. S. Dessau, npj Quantum Mater. 3, 24 (2018). 10.1038/s41535-018-0094-3 Crossref, Google Scholar
- 37 M. Horio, C. E. Matt, K. Kramer, D. Sutter, A. M. Cook, Y. Sassa, K. Hauser, M. Månsson, N. C. Plumb, M. Shi, O. J. Lipscombe, S. M. Hayden, T. Neupert, and J. Chang, Nat. Commun. 9, 3252 (2018). 10.1038/s41467-018-05715-2 Crossref, Google Scholar
- 38 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003). 10.1103/RevModPhys.75.473 Crossref, Google Scholar
- 39 T. Willers, F. Strigari, N. Hiraoka, Y. Q. Cai, M. W. Haverkort, K.-D. Tsuei, Y. F. Liao, S. Seiro, C. Geibel, F. Steglich, L. H. Tjeng, and A. Severing, Phys. Rev. Lett. 109, 046401 (2012). 10.1103/PhysRevLett.109.046401 Crossref, Google Scholar
- 40 H. Yamagami and A. Hasegawa, J. Phys. Soc. Jpn. 61, 2388 (1992). 10.1143/JPSJ.61.2388 Link, Google Scholar
- 41 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). 10.1103/PhysRev.94.1498 Crossref, Google Scholar
- 42 K. Takegahara, Y. Aoki, and A. Yanase, J. Phys. C 13, 583 (1980). 10.1088/0022-3719/13/4/016 Crossref, Google Scholar
- 43 P. Haen, J. Flouquet, F. Lapierre, P. Lejay, and G. Remenyi, J. Low Temp. Phys. 67, 391 (1987). 10.1007/BF00710351 Crossref, Google Scholar
- 44 Y. Shimizu, Y. Matsumoto, K. Aoki, N. Kimura, and H. Aoki, J. Phys. Soc. Jpn. 81, 044707 (2012). 10.1143/JPSJ.81.044707 Link, Google Scholar
- 45 A. Koizumi, G. Motoyama, Y. Kubo, T. Tanaka, M. Itou, and Y. Sakurai, Phys. Rev. Lett. 106, 136401 (2011). 10.1103/PhysRevLett.106.136401 Crossref, Google Scholar
- 46 Z. Wu, Y. Fang, H. Su, W. Xie, P. Li, Y. Wu, Y. Huang, D. Shen, B. Thiagarajan, J. Adell, C. Cao, H. Yuan, F. Steglich, and Y. Liu, Phys. Rev. Lett. 127, 067002 (2021). 10.1103/PhysRevLett.127.067002 Crossref, Google Scholar
- 47 S. A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. J. Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A. G. Green, and A. P. Mackenzie, Science 306, 1154 (2004). 10.1126/science.1104306 Crossref, Google Scholar
- 48 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006). 10.1103/RevModPhys.78.17 Crossref, Google Scholar
- 49 A. W. Rost, R. S. Perry, J.-F. Mercure, A. P. Mackenzie, and S. A. Grigera, Science 325, 1360 (2009). 10.1126/science.1176627 Crossref, Google Scholar
- 50 Y. Xu, F. Herman, V. Granata, D. Destraz, L. Das, J. Vonka, S. Gerber, J. Spring, M. Gibert, A. Schilling, X. Zhang, S. Li, R. Fittipaldi, M. H. Fischer, A. Vecchione, and J. Chang, Commun. Phys. 4, 1 (2021). 10.1038/s42005-020-00504-0 Crossref, Google Scholar